Step |
Hyp |
Ref |
Expression |
1 |
|
seqeq1 |
⊢ ( 𝑀 = if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) → seq 𝑀 ( + , 𝐹 ) = seq if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ( + , 𝐹 ) ) |
2 |
|
fveq2 |
⊢ ( 𝑀 = if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) → ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) ) |
3 |
1 2
|
fneq12d |
⊢ ( 𝑀 = if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) → ( seq 𝑀 ( + , 𝐹 ) Fn ( ℤ≥ ‘ 𝑀 ) ↔ seq if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ( + , 𝐹 ) Fn ( ℤ≥ ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) ) ) |
4 |
|
0z |
⊢ 0 ∈ ℤ |
5 |
4
|
elimel |
⊢ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ∈ ℤ |
6 |
|
eqid |
⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) ↾ ω ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) ↾ ω ) |
7 |
|
fvex |
⊢ ( 𝐹 ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) ∈ V |
8 |
|
eqid |
⊢ ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) 𝑦 ) 〉 ) , 〈 if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) , ( 𝐹 ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) 〉 ) ↾ ω ) = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) 𝑦 ) 〉 ) , 〈 if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) , ( 𝐹 ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) 〉 ) ↾ ω ) |
9 |
8
|
seqval |
⊢ seq if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ( + , 𝐹 ) = ran ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) 𝑦 ) 〉 ) , 〈 if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) , ( 𝐹 ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) 〉 ) ↾ ω ) |
10 |
5 6 7 8 9
|
uzrdgfni |
⊢ seq if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ( + , 𝐹 ) Fn ( ℤ≥ ‘ if ( 𝑀 ∈ ℤ , 𝑀 , 0 ) ) |
11 |
3 10
|
dedth |
⊢ ( 𝑀 ∈ ℤ → seq 𝑀 ( + , 𝐹 ) Fn ( ℤ≥ ‘ 𝑀 ) ) |