| Step | Hyp | Ref | Expression | 
						
							| 1 |  | seqfveq.1 | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 2 |  | seqfveq.2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... 𝑁 ) )  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 3 |  | eluzel2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑀  ∈  ℤ ) | 
						
							| 4 | 1 3 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 5 |  | uzid | ⊢ ( 𝑀  ∈  ℤ  →  𝑀  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 6 | 4 5 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 7 |  | seq1 | ⊢ ( 𝑀  ∈  ℤ  →  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑀 )  =  ( 𝐹 ‘ 𝑀 ) ) | 
						
							| 8 | 4 7 | syl | ⊢ ( 𝜑  →  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑀 )  =  ( 𝐹 ‘ 𝑀 ) ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝑘  =  𝑀  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑀 ) ) | 
						
							| 10 |  | fveq2 | ⊢ ( 𝑘  =  𝑀  →  ( 𝐺 ‘ 𝑘 )  =  ( 𝐺 ‘ 𝑀 ) ) | 
						
							| 11 | 9 10 | eqeq12d | ⊢ ( 𝑘  =  𝑀  →  ( ( 𝐹 ‘ 𝑘 )  =  ( 𝐺 ‘ 𝑘 )  ↔  ( 𝐹 ‘ 𝑀 )  =  ( 𝐺 ‘ 𝑀 ) ) ) | 
						
							| 12 | 2 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 )  =  ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 13 |  | eluzfz1 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑀  ∈  ( 𝑀 ... 𝑁 ) ) | 
						
							| 14 | 1 13 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ( 𝑀 ... 𝑁 ) ) | 
						
							| 15 | 11 12 14 | rspcdva | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑀 )  =  ( 𝐺 ‘ 𝑀 ) ) | 
						
							| 16 | 8 15 | eqtrd | ⊢ ( 𝜑  →  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑀 )  =  ( 𝐺 ‘ 𝑀 ) ) | 
						
							| 17 |  | fzp1ss | ⊢ ( 𝑀  ∈  ℤ  →  ( ( 𝑀  +  1 ) ... 𝑁 )  ⊆  ( 𝑀 ... 𝑁 ) ) | 
						
							| 18 | 4 17 | syl | ⊢ ( 𝜑  →  ( ( 𝑀  +  1 ) ... 𝑁 )  ⊆  ( 𝑀 ... 𝑁 ) ) | 
						
							| 19 | 18 | sselda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) )  →  𝑘  ∈  ( 𝑀 ... 𝑁 ) ) | 
						
							| 20 | 19 2 | syldan | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) )  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 21 | 6 16 1 20 | seqfveq2 | ⊢ ( 𝜑  →  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑁 )  =  ( seq 𝑀 (  +  ,  𝐺 ) ‘ 𝑁 ) ) |