Metamath Proof Explorer


Theorem seqfveq

Description: Equality of sequences. (Contributed by NM, 17-Mar-2005) (Revised by Mario Carneiro, 27-May-2014)

Ref Expression
Hypotheses seqfveq.1 ( 𝜑𝑁 ∈ ( ℤ𝑀 ) )
seqfveq.2 ( ( 𝜑𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹𝑘 ) = ( 𝐺𝑘 ) )
Assertion seqfveq ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) )

Proof

Step Hyp Ref Expression
1 seqfveq.1 ( 𝜑𝑁 ∈ ( ℤ𝑀 ) )
2 seqfveq.2 ( ( 𝜑𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹𝑘 ) = ( 𝐺𝑘 ) )
3 eluzel2 ( 𝑁 ∈ ( ℤ𝑀 ) → 𝑀 ∈ ℤ )
4 1 3 syl ( 𝜑𝑀 ∈ ℤ )
5 uzid ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ𝑀 ) )
6 4 5 syl ( 𝜑𝑀 ∈ ( ℤ𝑀 ) )
7 seq1 ( 𝑀 ∈ ℤ → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( 𝐹𝑀 ) )
8 4 7 syl ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( 𝐹𝑀 ) )
9 fveq2 ( 𝑘 = 𝑀 → ( 𝐹𝑘 ) = ( 𝐹𝑀 ) )
10 fveq2 ( 𝑘 = 𝑀 → ( 𝐺𝑘 ) = ( 𝐺𝑀 ) )
11 9 10 eqeq12d ( 𝑘 = 𝑀 → ( ( 𝐹𝑘 ) = ( 𝐺𝑘 ) ↔ ( 𝐹𝑀 ) = ( 𝐺𝑀 ) ) )
12 2 ralrimiva ( 𝜑 → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹𝑘 ) = ( 𝐺𝑘 ) )
13 eluzfz1 ( 𝑁 ∈ ( ℤ𝑀 ) → 𝑀 ∈ ( 𝑀 ... 𝑁 ) )
14 1 13 syl ( 𝜑𝑀 ∈ ( 𝑀 ... 𝑁 ) )
15 11 12 14 rspcdva ( 𝜑 → ( 𝐹𝑀 ) = ( 𝐺𝑀 ) )
16 8 15 eqtrd ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( 𝐺𝑀 ) )
17 fzp1ss ( 𝑀 ∈ ℤ → ( ( 𝑀 + 1 ) ... 𝑁 ) ⊆ ( 𝑀 ... 𝑁 ) )
18 4 17 syl ( 𝜑 → ( ( 𝑀 + 1 ) ... 𝑁 ) ⊆ ( 𝑀 ... 𝑁 ) )
19 18 sselda ( ( 𝜑𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → 𝑘 ∈ ( 𝑀 ... 𝑁 ) )
20 19 2 syldan ( ( 𝜑𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( 𝐹𝑘 ) = ( 𝐺𝑘 ) )
21 6 16 1 20 seqfveq2 ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) )