Step |
Hyp |
Ref |
Expression |
1 |
|
seqfveq.1 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
2 |
|
seqfveq.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) |
3 |
|
eluzel2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) |
4 |
1 3
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
5 |
|
uzid |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
6 |
4 5
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
7 |
|
seq1 |
⊢ ( 𝑀 ∈ ℤ → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( 𝐹 ‘ 𝑀 ) ) |
8 |
4 7
|
syl |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( 𝐹 ‘ 𝑀 ) ) |
9 |
|
fveq2 |
⊢ ( 𝑘 = 𝑀 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑀 ) ) |
10 |
|
fveq2 |
⊢ ( 𝑘 = 𝑀 → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑀 ) ) |
11 |
9 10
|
eqeq12d |
⊢ ( 𝑘 = 𝑀 → ( ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ↔ ( 𝐹 ‘ 𝑀 ) = ( 𝐺 ‘ 𝑀 ) ) ) |
12 |
2
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) |
13 |
|
eluzfz1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) |
14 |
1 13
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) |
15 |
11 12 14
|
rspcdva |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) = ( 𝐺 ‘ 𝑀 ) ) |
16 |
8 15
|
eqtrd |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( 𝐺 ‘ 𝑀 ) ) |
17 |
|
fzp1ss |
⊢ ( 𝑀 ∈ ℤ → ( ( 𝑀 + 1 ) ... 𝑁 ) ⊆ ( 𝑀 ... 𝑁 ) ) |
18 |
4 17
|
syl |
⊢ ( 𝜑 → ( ( 𝑀 + 1 ) ... 𝑁 ) ⊆ ( 𝑀 ... 𝑁 ) ) |
19 |
18
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) |
20 |
19 2
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) |
21 |
6 16 1 20
|
seqfveq2 |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) |