Step |
Hyp |
Ref |
Expression |
1 |
|
seqfveq2.1 |
⊢ ( 𝜑 → 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
2 |
|
seqfveq2.2 |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( 𝐺 ‘ 𝐾 ) ) |
3 |
|
seqfveq2.3 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) |
4 |
|
seqfveq2.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) |
5 |
|
eluzfz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) → 𝑁 ∈ ( 𝐾 ... 𝑁 ) ) |
6 |
3 5
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝐾 ... 𝑁 ) ) |
7 |
|
eleq1 |
⊢ ( 𝑥 = 𝐾 → ( 𝑥 ∈ ( 𝐾 ... 𝑁 ) ↔ 𝐾 ∈ ( 𝐾 ... 𝑁 ) ) ) |
8 |
|
fveq2 |
⊢ ( 𝑥 = 𝐾 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) ) |
9 |
|
fveq2 |
⊢ ( 𝑥 = 𝐾 → ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑥 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝐾 ) ) |
10 |
8 9
|
eqeq12d |
⊢ ( 𝑥 = 𝐾 → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑥 ) ↔ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝐾 ) ) ) |
11 |
7 10
|
imbi12d |
⊢ ( 𝑥 = 𝐾 → ( ( 𝑥 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑥 ) ) ↔ ( 𝐾 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝐾 ) ) ) ) |
12 |
11
|
imbi2d |
⊢ ( 𝑥 = 𝐾 → ( ( 𝜑 → ( 𝑥 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ( 𝐾 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝐾 ) ) ) ) ) |
13 |
|
eleq1 |
⊢ ( 𝑥 = 𝑛 → ( 𝑥 ∈ ( 𝐾 ... 𝑁 ) ↔ 𝑛 ∈ ( 𝐾 ... 𝑁 ) ) ) |
14 |
|
fveq2 |
⊢ ( 𝑥 = 𝑛 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) |
15 |
|
fveq2 |
⊢ ( 𝑥 = 𝑛 → ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑥 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑛 ) ) |
16 |
14 15
|
eqeq12d |
⊢ ( 𝑥 = 𝑛 → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑥 ) ↔ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑛 ) ) ) |
17 |
13 16
|
imbi12d |
⊢ ( 𝑥 = 𝑛 → ( ( 𝑥 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑥 ) ) ↔ ( 𝑛 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑛 ) ) ) ) |
18 |
17
|
imbi2d |
⊢ ( 𝑥 = 𝑛 → ( ( 𝜑 → ( 𝑥 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ( 𝑛 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑛 ) ) ) ) ) |
19 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 𝑥 ∈ ( 𝐾 ... 𝑁 ) ↔ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) ) |
20 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) |
21 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑥 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ) |
22 |
20 21
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑥 ) ↔ ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( seq 𝐾 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ) ) |
23 |
19 22
|
imbi12d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝑥 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑥 ) ) ↔ ( ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( seq 𝐾 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ) ) ) |
24 |
23
|
imbi2d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝜑 → ( 𝑥 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ( ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( seq 𝐾 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ) ) ) ) |
25 |
|
eleq1 |
⊢ ( 𝑥 = 𝑁 → ( 𝑥 ∈ ( 𝐾 ... 𝑁 ) ↔ 𝑁 ∈ ( 𝐾 ... 𝑁 ) ) ) |
26 |
|
fveq2 |
⊢ ( 𝑥 = 𝑁 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) |
27 |
|
fveq2 |
⊢ ( 𝑥 = 𝑁 → ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑥 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑁 ) ) |
28 |
26 27
|
eqeq12d |
⊢ ( 𝑥 = 𝑁 → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑥 ) ↔ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑁 ) ) ) |
29 |
25 28
|
imbi12d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝑥 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑥 ) ) ↔ ( 𝑁 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑁 ) ) ) ) |
30 |
29
|
imbi2d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝜑 → ( 𝑥 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ( 𝑁 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑁 ) ) ) ) ) |
31 |
|
eluzelz |
⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝐾 ∈ ℤ ) |
32 |
|
seq1 |
⊢ ( 𝐾 ∈ ℤ → ( seq 𝐾 ( + , 𝐺 ) ‘ 𝐾 ) = ( 𝐺 ‘ 𝐾 ) ) |
33 |
1 31 32
|
3syl |
⊢ ( 𝜑 → ( seq 𝐾 ( + , 𝐺 ) ‘ 𝐾 ) = ( 𝐺 ‘ 𝐾 ) ) |
34 |
2 33
|
eqtr4d |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝐾 ) ) |
35 |
34
|
a1d |
⊢ ( 𝜑 → ( 𝐾 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝐾 ) ) ) |
36 |
|
peano2fzr |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) → 𝑛 ∈ ( 𝐾 ... 𝑁 ) ) |
37 |
36
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) ) → 𝑛 ∈ ( 𝐾 ... 𝑁 ) ) |
38 |
37
|
expr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) → 𝑛 ∈ ( 𝐾 ... 𝑁 ) ) ) |
39 |
38
|
imim1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ( 𝑛 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑛 ) ) → ( ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑛 ) ) ) ) |
40 |
|
oveq1 |
⊢ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑛 ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = ( ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
41 |
|
simpl |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ) |
42 |
|
uztrn |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
43 |
41 1 42
|
syl2anr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
44 |
|
seqp1 |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
45 |
43 44
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
46 |
|
seqp1 |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) → ( seq 𝐾 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑛 ) + ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) |
47 |
46
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) ) → ( seq 𝐾 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑛 ) + ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) |
48 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
49 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) |
50 |
48 49
|
eqeq12d |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ↔ ( 𝐹 ‘ ( 𝑛 + 1 ) ) = ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) |
51 |
4
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) |
52 |
51
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) ) → ∀ 𝑘 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) |
53 |
|
eluzp1p1 |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) → ( 𝑛 + 1 ) ∈ ( ℤ≥ ‘ ( 𝐾 + 1 ) ) ) |
54 |
53
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) ) → ( 𝑛 + 1 ) ∈ ( ℤ≥ ‘ ( 𝐾 + 1 ) ) ) |
55 |
|
elfzuz3 |
⊢ ( ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) |
56 |
55
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) ) → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) |
57 |
|
elfzuzb |
⊢ ( ( 𝑛 + 1 ) ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ↔ ( ( 𝑛 + 1 ) ∈ ( ℤ≥ ‘ ( 𝐾 + 1 ) ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) ) |
58 |
54 56 57
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) ) → ( 𝑛 + 1 ) ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ) |
59 |
50 52 58
|
rspcdva |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) = ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) |
60 |
59
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) ) → ( ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = ( ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑛 ) + ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) |
61 |
47 60
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) ) → ( seq 𝐾 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
62 |
45 61
|
eqeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( seq 𝐾 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ↔ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = ( ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) |
63 |
40 62
|
syl5ibr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑛 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( seq 𝐾 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ) ) |
64 |
39 63
|
animpimp2impd |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) → ( ( 𝜑 → ( 𝑛 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑛 ) ) ) → ( 𝜑 → ( ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( seq 𝐾 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ) ) ) ) |
65 |
12 18 24 30 35 64
|
uzind4i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) → ( 𝜑 → ( 𝑁 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑁 ) ) ) ) |
66 |
3 65
|
mpcom |
⊢ ( 𝜑 → ( 𝑁 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑁 ) ) ) |
67 |
6 66
|
mpd |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( seq 𝐾 ( + , 𝐺 ) ‘ 𝑁 ) ) |