| Step |
Hyp |
Ref |
Expression |
| 1 |
|
seqhomo.1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
| 2 |
|
seqhomo.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) |
| 3 |
|
seqhomo.3 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 4 |
|
seqhomo.4 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝐻 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐻 ‘ 𝑥 ) 𝑄 ( 𝐻 ‘ 𝑦 ) ) ) |
| 5 |
|
seqhomo.5 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐺 ‘ 𝑥 ) ) |
| 6 |
|
eluzfz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) |
| 7 |
3 6
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) |
| 8 |
|
eleq1 |
⊢ ( 𝑥 = 𝑀 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↔ 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) ) |
| 9 |
|
2fveq3 |
⊢ ( 𝑥 = 𝑀 → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ) = ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) ) ) |
| 10 |
|
fveq2 |
⊢ ( 𝑥 = 𝑀 → ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑥 ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑀 ) ) |
| 11 |
9 10
|
eqeq12d |
⊢ ( 𝑥 = 𝑀 → ( ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑥 ) ↔ ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑀 ) ) ) |
| 12 |
8 11
|
imbi12d |
⊢ ( 𝑥 = 𝑀 → ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑥 ) ) ↔ ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑀 ) ) ) ) |
| 13 |
12
|
imbi2d |
⊢ ( 𝑥 = 𝑀 → ( ( 𝜑 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑀 ) ) ) ) ) |
| 14 |
|
eleq1 |
⊢ ( 𝑥 = 𝑛 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↔ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) ) |
| 15 |
|
2fveq3 |
⊢ ( 𝑥 = 𝑛 → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ) = ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) ) |
| 16 |
|
fveq2 |
⊢ ( 𝑥 = 𝑛 → ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑥 ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑛 ) ) |
| 17 |
15 16
|
eqeq12d |
⊢ ( 𝑥 = 𝑛 → ( ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑥 ) ↔ ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑛 ) ) ) |
| 18 |
14 17
|
imbi12d |
⊢ ( 𝑥 = 𝑛 → ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑥 ) ) ↔ ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑛 ) ) ) ) |
| 19 |
18
|
imbi2d |
⊢ ( 𝑥 = 𝑛 → ( ( 𝜑 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑛 ) ) ) ) ) |
| 20 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) |
| 21 |
|
2fveq3 |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ) = ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) |
| 22 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑥 ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ) |
| 23 |
21 22
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑥 ) ↔ ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ) ) |
| 24 |
20 23
|
imbi12d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑥 ) ) ↔ ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 25 |
24
|
imbi2d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝜑 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ) ) ) ) |
| 26 |
|
eleq1 |
⊢ ( 𝑥 = 𝑁 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↔ 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) ) |
| 27 |
|
2fveq3 |
⊢ ( 𝑥 = 𝑁 → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ) = ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) |
| 28 |
|
fveq2 |
⊢ ( 𝑥 = 𝑁 → ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑥 ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑁 ) ) |
| 29 |
27 28
|
eqeq12d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑥 ) ↔ ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑁 ) ) ) |
| 30 |
26 29
|
imbi12d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑥 ) ) ↔ ( 𝑁 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑁 ) ) ) ) |
| 31 |
30
|
imbi2d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝜑 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ( 𝑁 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑁 ) ) ) ) ) |
| 32 |
|
2fveq3 |
⊢ ( 𝑥 = 𝑀 → ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐻 ‘ ( 𝐹 ‘ 𝑀 ) ) ) |
| 33 |
|
fveq2 |
⊢ ( 𝑥 = 𝑀 → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑀 ) ) |
| 34 |
32 33
|
eqeq12d |
⊢ ( 𝑥 = 𝑀 → ( ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐺 ‘ 𝑥 ) ↔ ( 𝐻 ‘ ( 𝐹 ‘ 𝑀 ) ) = ( 𝐺 ‘ 𝑀 ) ) ) |
| 35 |
5
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐺 ‘ 𝑥 ) ) |
| 36 |
|
eluzfz1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) |
| 37 |
3 36
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) |
| 38 |
34 35 37
|
rspcdva |
⊢ ( 𝜑 → ( 𝐻 ‘ ( 𝐹 ‘ 𝑀 ) ) = ( 𝐺 ‘ 𝑀 ) ) |
| 39 |
|
eluzel2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) |
| 40 |
|
seq1 |
⊢ ( 𝑀 ∈ ℤ → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( 𝐹 ‘ 𝑀 ) ) |
| 41 |
3 39 40
|
3syl |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( 𝐹 ‘ 𝑀 ) ) |
| 42 |
41
|
fveq2d |
⊢ ( 𝜑 → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) ) = ( 𝐻 ‘ ( 𝐹 ‘ 𝑀 ) ) ) |
| 43 |
|
seq1 |
⊢ ( 𝑀 ∈ ℤ → ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑀 ) = ( 𝐺 ‘ 𝑀 ) ) |
| 44 |
3 39 43
|
3syl |
⊢ ( 𝜑 → ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑀 ) = ( 𝐺 ‘ 𝑀 ) ) |
| 45 |
38 42 44
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑀 ) ) |
| 46 |
45
|
a1d |
⊢ ( 𝜑 → ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑀 ) ) ) |
| 47 |
|
peano2fzr |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) |
| 48 |
47
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) |
| 49 |
48
|
expr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) ) |
| 50 |
49
|
imim1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑛 ) ) → ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑛 ) ) ) ) |
| 51 |
|
oveq1 |
⊢ ( ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑛 ) → ( ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) 𝑄 ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) = ( ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑛 ) 𝑄 ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) |
| 52 |
|
seqp1 |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 53 |
52
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 54 |
53
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) = ( 𝐻 ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 55 |
4
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝐻 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐻 ‘ 𝑥 ) 𝑄 ( 𝐻 ‘ 𝑦 ) ) ) |
| 56 |
55
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝐻 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐻 ‘ 𝑥 ) 𝑄 ( 𝐻 ‘ 𝑦 ) ) ) |
| 57 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 58 |
|
elfzuz3 |
⊢ ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑛 ) ) |
| 59 |
|
fzss2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑛 ) → ( 𝑀 ... 𝑛 ) ⊆ ( 𝑀 ... 𝑁 ) ) |
| 60 |
48 58 59
|
3syl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( 𝑀 ... 𝑛 ) ⊆ ( 𝑀 ... 𝑁 ) ) |
| 61 |
60
|
sselda |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑛 ) ) → 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) |
| 62 |
2
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) |
| 63 |
61 62
|
syldan |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑛 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) |
| 64 |
1
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
| 65 |
57 63 64
|
seqcl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ 𝑆 ) |
| 66 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
| 67 |
66
|
eleq1d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ↔ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ 𝑆 ) ) |
| 68 |
2
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) |
| 69 |
68
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ∀ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) |
| 70 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) |
| 71 |
67 69 70
|
rspcdva |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ 𝑆 ) |
| 72 |
|
fvoveq1 |
⊢ ( 𝑥 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) → ( 𝐻 ‘ ( 𝑥 + 𝑦 ) ) = ( 𝐻 ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + 𝑦 ) ) ) |
| 73 |
|
fveq2 |
⊢ ( 𝑥 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) → ( 𝐻 ‘ 𝑥 ) = ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) ) |
| 74 |
73
|
oveq1d |
⊢ ( 𝑥 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) → ( ( 𝐻 ‘ 𝑥 ) 𝑄 ( 𝐻 ‘ 𝑦 ) ) = ( ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) 𝑄 ( 𝐻 ‘ 𝑦 ) ) ) |
| 75 |
72 74
|
eqeq12d |
⊢ ( 𝑥 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) → ( ( 𝐻 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐻 ‘ 𝑥 ) 𝑄 ( 𝐻 ‘ 𝑦 ) ) ↔ ( 𝐻 ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + 𝑦 ) ) = ( ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) 𝑄 ( 𝐻 ‘ 𝑦 ) ) ) ) |
| 76 |
|
oveq2 |
⊢ ( 𝑦 = ( 𝐹 ‘ ( 𝑛 + 1 ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + 𝑦 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 77 |
76
|
fveq2d |
⊢ ( 𝑦 = ( 𝐹 ‘ ( 𝑛 + 1 ) ) → ( 𝐻 ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + 𝑦 ) ) = ( 𝐻 ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 78 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝐹 ‘ ( 𝑛 + 1 ) ) → ( 𝐻 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 79 |
78
|
oveq2d |
⊢ ( 𝑦 = ( 𝐹 ‘ ( 𝑛 + 1 ) ) → ( ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) 𝑄 ( 𝐻 ‘ 𝑦 ) ) = ( ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) 𝑄 ( 𝐻 ‘ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 80 |
77 79
|
eqeq12d |
⊢ ( 𝑦 = ( 𝐹 ‘ ( 𝑛 + 1 ) ) → ( ( 𝐻 ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + 𝑦 ) ) = ( ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) 𝑄 ( 𝐻 ‘ 𝑦 ) ) ↔ ( 𝐻 ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) = ( ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) 𝑄 ( 𝐻 ‘ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) ) |
| 81 |
75 80
|
rspc2v |
⊢ ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ 𝑆 ∧ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ 𝑆 ) → ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝐻 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐻 ‘ 𝑥 ) 𝑄 ( 𝐻 ‘ 𝑦 ) ) → ( 𝐻 ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) = ( ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) 𝑄 ( 𝐻 ‘ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) ) |
| 82 |
65 71 81
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝐻 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐻 ‘ 𝑥 ) 𝑄 ( 𝐻 ‘ 𝑦 ) ) → ( 𝐻 ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) = ( ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) 𝑄 ( 𝐻 ‘ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) ) |
| 83 |
56 82
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( 𝐻 ‘ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) = ( ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) 𝑄 ( 𝐻 ‘ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 84 |
|
2fveq3 |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐻 ‘ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 85 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) |
| 86 |
84 85
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐺 ‘ 𝑥 ) ↔ ( 𝐻 ‘ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) |
| 87 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ∀ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ( 𝐻 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐺 ‘ 𝑥 ) ) |
| 88 |
86 87 70
|
rspcdva |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( 𝐻 ‘ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) |
| 89 |
88
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) 𝑄 ( 𝐻 ‘ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) = ( ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) 𝑄 ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) |
| 90 |
54 83 89
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) = ( ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) 𝑄 ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) |
| 91 |
|
seqp1 |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑛 ) 𝑄 ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) |
| 92 |
91
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑛 ) 𝑄 ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) |
| 93 |
90 92
|
eqeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ↔ ( ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) 𝑄 ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) = ( ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑛 ) 𝑄 ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 94 |
51 93
|
imbitrrid |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑛 ) → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ) ) |
| 95 |
50 94
|
animpimp2impd |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝜑 → ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑛 ) ) ) → ( 𝜑 → ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ) ) ) ) |
| 96 |
13 19 25 31 46 95
|
uzind4i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝜑 → ( 𝑁 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑁 ) ) ) ) |
| 97 |
3 96
|
mpcom |
⊢ ( 𝜑 → ( 𝑁 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑁 ) ) ) |
| 98 |
7 97
|
mpd |
⊢ ( 𝜑 → ( 𝐻 ‘ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) = ( seq 𝑀 ( 𝑄 , 𝐺 ) ‘ 𝑁 ) ) |