Step |
Hyp |
Ref |
Expression |
1 |
|
seqid.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑍 + 𝑥 ) = 𝑥 ) |
2 |
|
seqid.2 |
⊢ ( 𝜑 → 𝑍 ∈ 𝑆 ) |
3 |
|
seqid.3 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
4 |
|
seqid.4 |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ∈ 𝑆 ) |
5 |
|
seqid.5 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) |
6 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) |
7 |
|
seq1 |
⊢ ( 𝑁 ∈ ℤ → ( seq 𝑁 ( + , 𝐹 ) ‘ 𝑁 ) = ( 𝐹 ‘ 𝑁 ) ) |
8 |
3 6 7
|
3syl |
⊢ ( 𝜑 → ( seq 𝑁 ( + , 𝐹 ) ‘ 𝑁 ) = ( 𝐹 ‘ 𝑁 ) ) |
9 |
|
seqeq1 |
⊢ ( 𝑁 = 𝑀 → seq 𝑁 ( + , 𝐹 ) = seq 𝑀 ( + , 𝐹 ) ) |
10 |
9
|
fveq1d |
⊢ ( 𝑁 = 𝑀 → ( seq 𝑁 ( + , 𝐹 ) ‘ 𝑁 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) |
11 |
10
|
eqeq1d |
⊢ ( 𝑁 = 𝑀 → ( ( seq 𝑁 ( + , 𝐹 ) ‘ 𝑁 ) = ( 𝐹 ‘ 𝑁 ) ↔ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( 𝐹 ‘ 𝑁 ) ) ) |
12 |
8 11
|
syl5ibcom |
⊢ ( 𝜑 → ( 𝑁 = 𝑀 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( 𝐹 ‘ 𝑁 ) ) ) |
13 |
|
eluzel2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) |
14 |
3 13
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
15 |
|
seqm1 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 − 1 ) ) + ( 𝐹 ‘ 𝑁 ) ) ) |
16 |
14 15
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 − 1 ) ) + ( 𝐹 ‘ 𝑁 ) ) ) |
17 |
|
oveq2 |
⊢ ( 𝑥 = 𝑍 → ( 𝑍 + 𝑥 ) = ( 𝑍 + 𝑍 ) ) |
18 |
|
id |
⊢ ( 𝑥 = 𝑍 → 𝑥 = 𝑍 ) |
19 |
17 18
|
eqeq12d |
⊢ ( 𝑥 = 𝑍 → ( ( 𝑍 + 𝑥 ) = 𝑥 ↔ ( 𝑍 + 𝑍 ) = 𝑍 ) ) |
20 |
1
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 ( 𝑍 + 𝑥 ) = 𝑥 ) |
21 |
19 20 2
|
rspcdva |
⊢ ( 𝜑 → ( 𝑍 + 𝑍 ) = 𝑍 ) |
22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( 𝑍 + 𝑍 ) = 𝑍 ) |
23 |
|
eluzp1m1 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
24 |
14 23
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
25 |
5
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ∧ 𝑥 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) |
26 |
22 24 25
|
seqid3 |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 − 1 ) ) = 𝑍 ) |
27 |
26
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 − 1 ) ) + ( 𝐹 ‘ 𝑁 ) ) = ( 𝑍 + ( 𝐹 ‘ 𝑁 ) ) ) |
28 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑁 ) → ( 𝑍 + 𝑥 ) = ( 𝑍 + ( 𝐹 ‘ 𝑁 ) ) ) |
29 |
|
id |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑁 ) → 𝑥 = ( 𝐹 ‘ 𝑁 ) ) |
30 |
28 29
|
eqeq12d |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑁 ) → ( ( 𝑍 + 𝑥 ) = 𝑥 ↔ ( 𝑍 + ( 𝐹 ‘ 𝑁 ) ) = ( 𝐹 ‘ 𝑁 ) ) ) |
31 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ∀ 𝑥 ∈ 𝑆 ( 𝑍 + 𝑥 ) = 𝑥 ) |
32 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( 𝐹 ‘ 𝑁 ) ∈ 𝑆 ) |
33 |
30 31 32
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( 𝑍 + ( 𝐹 ‘ 𝑁 ) ) = ( 𝐹 ‘ 𝑁 ) ) |
34 |
16 27 33
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( 𝐹 ‘ 𝑁 ) ) |
35 |
34
|
ex |
⊢ ( 𝜑 → ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( 𝐹 ‘ 𝑁 ) ) ) |
36 |
|
uzp1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 = 𝑀 ∨ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
37 |
3 36
|
syl |
⊢ ( 𝜑 → ( 𝑁 = 𝑀 ∨ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
38 |
12 35 37
|
mpjaod |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( 𝐹 ‘ 𝑁 ) ) |
39 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
40 |
3 38 39
|
seqfeq2 |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ↾ ( ℤ≥ ‘ 𝑁 ) ) = seq 𝑁 ( + , 𝐹 ) ) |