Step |
Hyp |
Ref |
Expression |
1 |
|
seqid2.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 + 𝑍 ) = 𝑥 ) |
2 |
|
seqid2.2 |
⊢ ( 𝜑 → 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
3 |
|
seqid2.3 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) |
4 |
|
seqid2.4 |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) ∈ 𝑆 ) |
5 |
|
seqid2.5 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) |
6 |
|
eluzfz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) → 𝑁 ∈ ( 𝐾 ... 𝑁 ) ) |
7 |
3 6
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝐾 ... 𝑁 ) ) |
8 |
|
eleq1 |
⊢ ( 𝑥 = 𝐾 → ( 𝑥 ∈ ( 𝐾 ... 𝑁 ) ↔ 𝐾 ∈ ( 𝐾 ... 𝑁 ) ) ) |
9 |
|
fveq2 |
⊢ ( 𝑥 = 𝐾 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) ) |
10 |
9
|
eqeq2d |
⊢ ( 𝑥 = 𝐾 → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ↔ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) ) ) |
11 |
8 10
|
imbi12d |
⊢ ( 𝑥 = 𝐾 → ( ( 𝑥 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ) ↔ ( 𝐾 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) ) ) ) |
12 |
11
|
imbi2d |
⊢ ( 𝑥 = 𝐾 → ( ( 𝜑 → ( 𝑥 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ( 𝐾 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) ) ) ) ) |
13 |
|
eleq1 |
⊢ ( 𝑥 = 𝑛 → ( 𝑥 ∈ ( 𝐾 ... 𝑁 ) ↔ 𝑛 ∈ ( 𝐾 ... 𝑁 ) ) ) |
14 |
|
fveq2 |
⊢ ( 𝑥 = 𝑛 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) |
15 |
14
|
eqeq2d |
⊢ ( 𝑥 = 𝑛 → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ↔ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) ) |
16 |
13 15
|
imbi12d |
⊢ ( 𝑥 = 𝑛 → ( ( 𝑥 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ) ↔ ( 𝑛 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) ) ) |
17 |
16
|
imbi2d |
⊢ ( 𝑥 = 𝑛 → ( ( 𝜑 → ( 𝑥 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ( 𝑛 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) ) ) ) |
18 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 𝑥 ∈ ( 𝐾 ... 𝑁 ) ↔ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) ) |
19 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) |
20 |
19
|
eqeq2d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ↔ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) |
21 |
18 20
|
imbi12d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝑥 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ) ↔ ( ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) ) |
22 |
21
|
imbi2d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝜑 → ( 𝑥 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ( ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) ) ) |
23 |
|
eleq1 |
⊢ ( 𝑥 = 𝑁 → ( 𝑥 ∈ ( 𝐾 ... 𝑁 ) ↔ 𝑁 ∈ ( 𝐾 ... 𝑁 ) ) ) |
24 |
|
fveq2 |
⊢ ( 𝑥 = 𝑁 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) |
25 |
24
|
eqeq2d |
⊢ ( 𝑥 = 𝑁 → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ↔ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) |
26 |
23 25
|
imbi12d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝑥 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ) ↔ ( 𝑁 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) ) |
27 |
26
|
imbi2d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝜑 → ( 𝑥 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) ) ) ↔ ( 𝜑 → ( 𝑁 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) ) ) |
28 |
|
eqidd |
⊢ ( 𝐾 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) ) |
29 |
28
|
2a1i |
⊢ ( 𝐾 ∈ ℤ → ( 𝜑 → ( 𝐾 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) ) ) ) |
30 |
|
peano2fzr |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) → 𝑛 ∈ ( 𝐾 ... 𝑁 ) ) |
31 |
30
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) ) → 𝑛 ∈ ( 𝐾 ... 𝑁 ) ) |
32 |
31
|
expr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) → 𝑛 ∈ ( 𝐾 ... 𝑁 ) ) ) |
33 |
32
|
imim1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ) → ( ( 𝑛 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) → ( ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) ) ) |
34 |
|
oveq1 |
⊢ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
35 |
|
fveqeq2 |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝐹 ‘ 𝑥 ) = 𝑍 ↔ ( 𝐹 ‘ ( 𝑛 + 1 ) ) = 𝑍 ) ) |
36 |
5
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝐹 ‘ 𝑥 ) = 𝑍 ) |
37 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) ) → ∀ 𝑥 ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ( 𝐹 ‘ 𝑥 ) = 𝑍 ) |
38 |
|
eluzp1p1 |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) → ( 𝑛 + 1 ) ∈ ( ℤ≥ ‘ ( 𝐾 + 1 ) ) ) |
39 |
38
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) ) → ( 𝑛 + 1 ) ∈ ( ℤ≥ ‘ ( 𝐾 + 1 ) ) ) |
40 |
|
elfzuz3 |
⊢ ( ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) |
41 |
40
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) ) → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) |
42 |
|
elfzuzb |
⊢ ( ( 𝑛 + 1 ) ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ↔ ( ( 𝑛 + 1 ) ∈ ( ℤ≥ ‘ ( 𝐾 + 1 ) ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑛 + 1 ) ) ) ) |
43 |
39 41 42
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) ) → ( 𝑛 + 1 ) ∈ ( ( 𝐾 + 1 ) ... 𝑁 ) ) |
44 |
35 37 43
|
rspcdva |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) = 𝑍 ) |
45 |
44
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) + 𝑍 ) ) |
46 |
|
oveq1 |
⊢ ( 𝑥 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) → ( 𝑥 + 𝑍 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) + 𝑍 ) ) |
47 |
|
id |
⊢ ( 𝑥 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) → 𝑥 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) ) |
48 |
46 47
|
eqeq12d |
⊢ ( 𝑥 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) → ( ( 𝑥 + 𝑍 ) = 𝑥 ↔ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) + 𝑍 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) ) ) |
49 |
1
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 ( 𝑥 + 𝑍 ) = 𝑥 ) |
50 |
48 49 4
|
rspcdva |
⊢ ( 𝜑 → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) + 𝑍 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) ) |
51 |
50
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) + 𝑍 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) ) |
52 |
45 51
|
eqtr2d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
53 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ) |
54 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) ) → 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
55 |
|
uztrn |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
56 |
53 54 55
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
57 |
|
seqp1 |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
58 |
56 57
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
59 |
52 58
|
eqeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ↔ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) |
60 |
34 59
|
syl5ibr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) |
61 |
33 60
|
animpimp2impd |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝐾 ) → ( ( 𝜑 → ( 𝑛 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) ) → ( 𝜑 → ( ( 𝑛 + 1 ) ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) ) ) |
62 |
12 17 22 27 29 61
|
uzind4 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) → ( 𝜑 → ( 𝑁 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) ) |
63 |
3 62
|
mpcom |
⊢ ( 𝜑 → ( 𝑁 ∈ ( 𝐾 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) |
64 |
7 63
|
mpd |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝐾 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) |