| Step | Hyp | Ref | Expression | 
						
							| 1 |  | seqid3.1 | ⊢ ( 𝜑  →  ( 𝑍  +  𝑍 )  =  𝑍 ) | 
						
							| 2 |  | seqid3.2 | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 3 |  | seqid3.3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 ... 𝑁 ) )  →  ( 𝐹 ‘ 𝑥 )  =  𝑍 ) | 
						
							| 4 |  | fvex | ⊢ ( 𝐹 ‘ 𝑥 )  ∈  V | 
						
							| 5 | 4 | elsn | ⊢ ( ( 𝐹 ‘ 𝑥 )  ∈  { 𝑍 }  ↔  ( 𝐹 ‘ 𝑥 )  =  𝑍 ) | 
						
							| 6 | 3 5 | sylibr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑀 ... 𝑁 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  { 𝑍 } ) | 
						
							| 7 |  | ovex | ⊢ ( 𝑍  +  𝑍 )  ∈  V | 
						
							| 8 | 7 | elsn | ⊢ ( ( 𝑍  +  𝑍 )  ∈  { 𝑍 }  ↔  ( 𝑍  +  𝑍 )  =  𝑍 ) | 
						
							| 9 | 1 8 | sylibr | ⊢ ( 𝜑  →  ( 𝑍  +  𝑍 )  ∈  { 𝑍 } ) | 
						
							| 10 |  | elsni | ⊢ ( 𝑥  ∈  { 𝑍 }  →  𝑥  =  𝑍 ) | 
						
							| 11 |  | elsni | ⊢ ( 𝑦  ∈  { 𝑍 }  →  𝑦  =  𝑍 ) | 
						
							| 12 | 10 11 | oveqan12d | ⊢ ( ( 𝑥  ∈  { 𝑍 }  ∧  𝑦  ∈  { 𝑍 } )  →  ( 𝑥  +  𝑦 )  =  ( 𝑍  +  𝑍 ) ) | 
						
							| 13 | 12 | eleq1d | ⊢ ( ( 𝑥  ∈  { 𝑍 }  ∧  𝑦  ∈  { 𝑍 } )  →  ( ( 𝑥  +  𝑦 )  ∈  { 𝑍 }  ↔  ( 𝑍  +  𝑍 )  ∈  { 𝑍 } ) ) | 
						
							| 14 | 9 13 | syl5ibrcom | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  { 𝑍 }  ∧  𝑦  ∈  { 𝑍 } )  →  ( 𝑥  +  𝑦 )  ∈  { 𝑍 } ) ) | 
						
							| 15 | 14 | imp | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  { 𝑍 }  ∧  𝑦  ∈  { 𝑍 } ) )  →  ( 𝑥  +  𝑦 )  ∈  { 𝑍 } ) | 
						
							| 16 | 2 6 15 | seqcl | ⊢ ( 𝜑  →  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑁 )  ∈  { 𝑍 } ) | 
						
							| 17 |  | elsni | ⊢ ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑁 )  ∈  { 𝑍 }  →  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑁 )  =  𝑍 ) | 
						
							| 18 | 16 17 | syl | ⊢ ( 𝜑  →  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑁 )  =  𝑍 ) |