Step |
Hyp |
Ref |
Expression |
1 |
|
seqid3.1 |
⊢ ( 𝜑 → ( 𝑍 + 𝑍 ) = 𝑍 ) |
2 |
|
seqid3.2 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
3 |
|
seqid3.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) |
4 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑥 ) ∈ V |
5 |
4
|
elsn |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ { 𝑍 } ↔ ( 𝐹 ‘ 𝑥 ) = 𝑍 ) |
6 |
3 5
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ { 𝑍 } ) |
7 |
|
ovex |
⊢ ( 𝑍 + 𝑍 ) ∈ V |
8 |
7
|
elsn |
⊢ ( ( 𝑍 + 𝑍 ) ∈ { 𝑍 } ↔ ( 𝑍 + 𝑍 ) = 𝑍 ) |
9 |
1 8
|
sylibr |
⊢ ( 𝜑 → ( 𝑍 + 𝑍 ) ∈ { 𝑍 } ) |
10 |
|
elsni |
⊢ ( 𝑥 ∈ { 𝑍 } → 𝑥 = 𝑍 ) |
11 |
|
elsni |
⊢ ( 𝑦 ∈ { 𝑍 } → 𝑦 = 𝑍 ) |
12 |
10 11
|
oveqan12d |
⊢ ( ( 𝑥 ∈ { 𝑍 } ∧ 𝑦 ∈ { 𝑍 } ) → ( 𝑥 + 𝑦 ) = ( 𝑍 + 𝑍 ) ) |
13 |
12
|
eleq1d |
⊢ ( ( 𝑥 ∈ { 𝑍 } ∧ 𝑦 ∈ { 𝑍 } ) → ( ( 𝑥 + 𝑦 ) ∈ { 𝑍 } ↔ ( 𝑍 + 𝑍 ) ∈ { 𝑍 } ) ) |
14 |
9 13
|
syl5ibrcom |
⊢ ( 𝜑 → ( ( 𝑥 ∈ { 𝑍 } ∧ 𝑦 ∈ { 𝑍 } ) → ( 𝑥 + 𝑦 ) ∈ { 𝑍 } ) ) |
15 |
14
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ { 𝑍 } ∧ 𝑦 ∈ { 𝑍 } ) ) → ( 𝑥 + 𝑦 ) ∈ { 𝑍 } ) |
16 |
2 6 15
|
seqcl |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ∈ { 𝑍 } ) |
17 |
|
elsni |
⊢ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ∈ { 𝑍 } → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = 𝑍 ) |
18 |
16 17
|
syl |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = 𝑍 ) |