| Step |
Hyp |
Ref |
Expression |
| 1 |
|
seqof.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 2 |
|
seqof.2 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 3 |
|
seqof.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝑧 ∈ 𝐴 ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
| 4 |
|
fvex |
⊢ ( 𝐺 ‘ 𝑥 ) ∈ V |
| 5 |
4
|
rgenw |
⊢ ∀ 𝑧 ∈ 𝐴 ( 𝐺 ‘ 𝑥 ) ∈ V |
| 6 |
|
eqid |
⊢ ( 𝑧 ∈ 𝐴 ↦ ( 𝐺 ‘ 𝑥 ) ) = ( 𝑧 ∈ 𝐴 ↦ ( 𝐺 ‘ 𝑥 ) ) |
| 7 |
6
|
fnmpt |
⊢ ( ∀ 𝑧 ∈ 𝐴 ( 𝐺 ‘ 𝑥 ) ∈ V → ( 𝑧 ∈ 𝐴 ↦ ( 𝐺 ‘ 𝑥 ) ) Fn 𝐴 ) |
| 8 |
5 7
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝑧 ∈ 𝐴 ↦ ( 𝐺 ‘ 𝑥 ) ) Fn 𝐴 ) |
| 9 |
3
|
fneq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝐹 ‘ 𝑥 ) Fn 𝐴 ↔ ( 𝑧 ∈ 𝐴 ↦ ( 𝐺 ‘ 𝑥 ) ) Fn 𝐴 ) ) |
| 10 |
8 9
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) Fn 𝐴 ) |
| 11 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑥 ) ∈ V |
| 12 |
|
fneq1 |
⊢ ( 𝑧 = ( 𝐹 ‘ 𝑥 ) → ( 𝑧 Fn 𝐴 ↔ ( 𝐹 ‘ 𝑥 ) Fn 𝐴 ) ) |
| 13 |
11 12
|
elab |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ { 𝑧 ∣ 𝑧 Fn 𝐴 } ↔ ( 𝐹 ‘ 𝑥 ) Fn 𝐴 ) |
| 14 |
10 13
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ { 𝑧 ∣ 𝑧 Fn 𝐴 } ) |
| 15 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 Fn 𝐴 ∧ 𝑦 Fn 𝐴 ) ) → 𝑥 Fn 𝐴 ) |
| 16 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 Fn 𝐴 ∧ 𝑦 Fn 𝐴 ) ) → 𝑦 Fn 𝐴 ) |
| 17 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 Fn 𝐴 ∧ 𝑦 Fn 𝐴 ) ) → 𝐴 ∈ 𝑉 ) |
| 18 |
|
inidm |
⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 |
| 19 |
15 16 17 17 18
|
offn |
⊢ ( ( 𝜑 ∧ ( 𝑥 Fn 𝐴 ∧ 𝑦 Fn 𝐴 ) ) → ( 𝑥 ∘f + 𝑦 ) Fn 𝐴 ) |
| 20 |
19
|
ex |
⊢ ( 𝜑 → ( ( 𝑥 Fn 𝐴 ∧ 𝑦 Fn 𝐴 ) → ( 𝑥 ∘f + 𝑦 ) Fn 𝐴 ) ) |
| 21 |
|
vex |
⊢ 𝑥 ∈ V |
| 22 |
|
fneq1 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 Fn 𝐴 ↔ 𝑥 Fn 𝐴 ) ) |
| 23 |
21 22
|
elab |
⊢ ( 𝑥 ∈ { 𝑧 ∣ 𝑧 Fn 𝐴 } ↔ 𝑥 Fn 𝐴 ) |
| 24 |
|
vex |
⊢ 𝑦 ∈ V |
| 25 |
|
fneq1 |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 Fn 𝐴 ↔ 𝑦 Fn 𝐴 ) ) |
| 26 |
24 25
|
elab |
⊢ ( 𝑦 ∈ { 𝑧 ∣ 𝑧 Fn 𝐴 } ↔ 𝑦 Fn 𝐴 ) |
| 27 |
23 26
|
anbi12i |
⊢ ( ( 𝑥 ∈ { 𝑧 ∣ 𝑧 Fn 𝐴 } ∧ 𝑦 ∈ { 𝑧 ∣ 𝑧 Fn 𝐴 } ) ↔ ( 𝑥 Fn 𝐴 ∧ 𝑦 Fn 𝐴 ) ) |
| 28 |
|
ovex |
⊢ ( 𝑥 ∘f + 𝑦 ) ∈ V |
| 29 |
|
fneq1 |
⊢ ( 𝑧 = ( 𝑥 ∘f + 𝑦 ) → ( 𝑧 Fn 𝐴 ↔ ( 𝑥 ∘f + 𝑦 ) Fn 𝐴 ) ) |
| 30 |
28 29
|
elab |
⊢ ( ( 𝑥 ∘f + 𝑦 ) ∈ { 𝑧 ∣ 𝑧 Fn 𝐴 } ↔ ( 𝑥 ∘f + 𝑦 ) Fn 𝐴 ) |
| 31 |
20 27 30
|
3imtr4g |
⊢ ( 𝜑 → ( ( 𝑥 ∈ { 𝑧 ∣ 𝑧 Fn 𝐴 } ∧ 𝑦 ∈ { 𝑧 ∣ 𝑧 Fn 𝐴 } ) → ( 𝑥 ∘f + 𝑦 ) ∈ { 𝑧 ∣ 𝑧 Fn 𝐴 } ) ) |
| 32 |
31
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ { 𝑧 ∣ 𝑧 Fn 𝐴 } ∧ 𝑦 ∈ { 𝑧 ∣ 𝑧 Fn 𝐴 } ) ) → ( 𝑥 ∘f + 𝑦 ) ∈ { 𝑧 ∣ 𝑧 Fn 𝐴 } ) |
| 33 |
2 14 32
|
seqcl |
⊢ ( 𝜑 → ( seq 𝑀 ( ∘f + , 𝐹 ) ‘ 𝑁 ) ∈ { 𝑧 ∣ 𝑧 Fn 𝐴 } ) |
| 34 |
|
fvex |
⊢ ( seq 𝑀 ( ∘f + , 𝐹 ) ‘ 𝑁 ) ∈ V |
| 35 |
|
fneq1 |
⊢ ( 𝑧 = ( seq 𝑀 ( ∘f + , 𝐹 ) ‘ 𝑁 ) → ( 𝑧 Fn 𝐴 ↔ ( seq 𝑀 ( ∘f + , 𝐹 ) ‘ 𝑁 ) Fn 𝐴 ) ) |
| 36 |
34 35
|
elab |
⊢ ( ( seq 𝑀 ( ∘f + , 𝐹 ) ‘ 𝑁 ) ∈ { 𝑧 ∣ 𝑧 Fn 𝐴 } ↔ ( seq 𝑀 ( ∘f + , 𝐹 ) ‘ 𝑁 ) Fn 𝐴 ) |
| 37 |
33 36
|
sylib |
⊢ ( 𝜑 → ( seq 𝑀 ( ∘f + , 𝐹 ) ‘ 𝑁 ) Fn 𝐴 ) |
| 38 |
|
dffn5 |
⊢ ( ( seq 𝑀 ( ∘f + , 𝐹 ) ‘ 𝑁 ) Fn 𝐴 ↔ ( seq 𝑀 ( ∘f + , 𝐹 ) ‘ 𝑁 ) = ( 𝑧 ∈ 𝐴 ↦ ( ( seq 𝑀 ( ∘f + , 𝐹 ) ‘ 𝑁 ) ‘ 𝑧 ) ) ) |
| 39 |
37 38
|
sylib |
⊢ ( 𝜑 → ( seq 𝑀 ( ∘f + , 𝐹 ) ‘ 𝑁 ) = ( 𝑧 ∈ 𝐴 ↦ ( ( seq 𝑀 ( ∘f + , 𝐹 ) ‘ 𝑁 ) ‘ 𝑧 ) ) ) |
| 40 |
|
fveq1 |
⊢ ( 𝑤 = ( seq 𝑀 ( ∘f + , 𝐹 ) ‘ 𝑁 ) → ( 𝑤 ‘ 𝑧 ) = ( ( seq 𝑀 ( ∘f + , 𝐹 ) ‘ 𝑁 ) ‘ 𝑧 ) ) |
| 41 |
|
eqid |
⊢ ( 𝑤 ∈ V ↦ ( 𝑤 ‘ 𝑧 ) ) = ( 𝑤 ∈ V ↦ ( 𝑤 ‘ 𝑧 ) ) |
| 42 |
|
fvex |
⊢ ( ( seq 𝑀 ( ∘f + , 𝐹 ) ‘ 𝑁 ) ‘ 𝑧 ) ∈ V |
| 43 |
40 41 42
|
fvmpt |
⊢ ( ( seq 𝑀 ( ∘f + , 𝐹 ) ‘ 𝑁 ) ∈ V → ( ( 𝑤 ∈ V ↦ ( 𝑤 ‘ 𝑧 ) ) ‘ ( seq 𝑀 ( ∘f + , 𝐹 ) ‘ 𝑁 ) ) = ( ( seq 𝑀 ( ∘f + , 𝐹 ) ‘ 𝑁 ) ‘ 𝑧 ) ) |
| 44 |
34 43
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝑤 ∈ V ↦ ( 𝑤 ‘ 𝑧 ) ) ‘ ( seq 𝑀 ( ∘f + , 𝐹 ) ‘ 𝑁 ) ) = ( ( seq 𝑀 ( ∘f + , 𝐹 ) ‘ 𝑁 ) ‘ 𝑧 ) ) |
| 45 |
32
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ ( 𝑥 ∈ { 𝑧 ∣ 𝑧 Fn 𝐴 } ∧ 𝑦 ∈ { 𝑧 ∣ 𝑧 Fn 𝐴 } ) ) → ( 𝑥 ∘f + 𝑦 ) ∈ { 𝑧 ∣ 𝑧 Fn 𝐴 } ) |
| 46 |
14
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ { 𝑧 ∣ 𝑧 Fn 𝐴 } ) |
| 47 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 48 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 Fn 𝐴 ∧ 𝑦 Fn 𝐴 ) ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝑥 ‘ 𝑧 ) = ( 𝑥 ‘ 𝑧 ) ) |
| 49 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 Fn 𝐴 ∧ 𝑦 Fn 𝐴 ) ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝑦 ‘ 𝑧 ) = ( 𝑦 ‘ 𝑧 ) ) |
| 50 |
15 16 17 17 18 48 49
|
ofval |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 Fn 𝐴 ∧ 𝑦 Fn 𝐴 ) ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝑥 ∘f + 𝑦 ) ‘ 𝑧 ) = ( ( 𝑥 ‘ 𝑧 ) + ( 𝑦 ‘ 𝑧 ) ) ) |
| 51 |
50
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ ( 𝑥 Fn 𝐴 ∧ 𝑦 Fn 𝐴 ) ) → ( ( 𝑥 ∘f + 𝑦 ) ‘ 𝑧 ) = ( ( 𝑥 ‘ 𝑧 ) + ( 𝑦 ‘ 𝑧 ) ) ) |
| 52 |
|
fveq1 |
⊢ ( 𝑤 = ( 𝑥 ∘f + 𝑦 ) → ( 𝑤 ‘ 𝑧 ) = ( ( 𝑥 ∘f + 𝑦 ) ‘ 𝑧 ) ) |
| 53 |
|
fvex |
⊢ ( ( 𝑥 ∘f + 𝑦 ) ‘ 𝑧 ) ∈ V |
| 54 |
52 41 53
|
fvmpt |
⊢ ( ( 𝑥 ∘f + 𝑦 ) ∈ V → ( ( 𝑤 ∈ V ↦ ( 𝑤 ‘ 𝑧 ) ) ‘ ( 𝑥 ∘f + 𝑦 ) ) = ( ( 𝑥 ∘f + 𝑦 ) ‘ 𝑧 ) ) |
| 55 |
28 54
|
ax-mp |
⊢ ( ( 𝑤 ∈ V ↦ ( 𝑤 ‘ 𝑧 ) ) ‘ ( 𝑥 ∘f + 𝑦 ) ) = ( ( 𝑥 ∘f + 𝑦 ) ‘ 𝑧 ) |
| 56 |
|
fveq1 |
⊢ ( 𝑤 = 𝑥 → ( 𝑤 ‘ 𝑧 ) = ( 𝑥 ‘ 𝑧 ) ) |
| 57 |
|
fvex |
⊢ ( 𝑥 ‘ 𝑧 ) ∈ V |
| 58 |
56 41 57
|
fvmpt |
⊢ ( 𝑥 ∈ V → ( ( 𝑤 ∈ V ↦ ( 𝑤 ‘ 𝑧 ) ) ‘ 𝑥 ) = ( 𝑥 ‘ 𝑧 ) ) |
| 59 |
58
|
elv |
⊢ ( ( 𝑤 ∈ V ↦ ( 𝑤 ‘ 𝑧 ) ) ‘ 𝑥 ) = ( 𝑥 ‘ 𝑧 ) |
| 60 |
|
fveq1 |
⊢ ( 𝑤 = 𝑦 → ( 𝑤 ‘ 𝑧 ) = ( 𝑦 ‘ 𝑧 ) ) |
| 61 |
|
fvex |
⊢ ( 𝑦 ‘ 𝑧 ) ∈ V |
| 62 |
60 41 61
|
fvmpt |
⊢ ( 𝑦 ∈ V → ( ( 𝑤 ∈ V ↦ ( 𝑤 ‘ 𝑧 ) ) ‘ 𝑦 ) = ( 𝑦 ‘ 𝑧 ) ) |
| 63 |
62
|
elv |
⊢ ( ( 𝑤 ∈ V ↦ ( 𝑤 ‘ 𝑧 ) ) ‘ 𝑦 ) = ( 𝑦 ‘ 𝑧 ) |
| 64 |
59 63
|
oveq12i |
⊢ ( ( ( 𝑤 ∈ V ↦ ( 𝑤 ‘ 𝑧 ) ) ‘ 𝑥 ) + ( ( 𝑤 ∈ V ↦ ( 𝑤 ‘ 𝑧 ) ) ‘ 𝑦 ) ) = ( ( 𝑥 ‘ 𝑧 ) + ( 𝑦 ‘ 𝑧 ) ) |
| 65 |
51 55 64
|
3eqtr4g |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ ( 𝑥 Fn 𝐴 ∧ 𝑦 Fn 𝐴 ) ) → ( ( 𝑤 ∈ V ↦ ( 𝑤 ‘ 𝑧 ) ) ‘ ( 𝑥 ∘f + 𝑦 ) ) = ( ( ( 𝑤 ∈ V ↦ ( 𝑤 ‘ 𝑧 ) ) ‘ 𝑥 ) + ( ( 𝑤 ∈ V ↦ ( 𝑤 ‘ 𝑧 ) ) ‘ 𝑦 ) ) ) |
| 66 |
27 65
|
sylan2b |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ ( 𝑥 ∈ { 𝑧 ∣ 𝑧 Fn 𝐴 } ∧ 𝑦 ∈ { 𝑧 ∣ 𝑧 Fn 𝐴 } ) ) → ( ( 𝑤 ∈ V ↦ ( 𝑤 ‘ 𝑧 ) ) ‘ ( 𝑥 ∘f + 𝑦 ) ) = ( ( ( 𝑤 ∈ V ↦ ( 𝑤 ‘ 𝑧 ) ) ‘ 𝑥 ) + ( ( 𝑤 ∈ V ↦ ( 𝑤 ‘ 𝑧 ) ) ‘ 𝑦 ) ) ) |
| 67 |
|
fveq1 |
⊢ ( 𝑤 = ( 𝐹 ‘ 𝑥 ) → ( 𝑤 ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑧 ) ) |
| 68 |
|
fvex |
⊢ ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑧 ) ∈ V |
| 69 |
67 41 68
|
fvmpt |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ V → ( ( 𝑤 ∈ V ↦ ( 𝑤 ‘ 𝑧 ) ) ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑧 ) ) |
| 70 |
11 69
|
ax-mp |
⊢ ( ( 𝑤 ∈ V ↦ ( 𝑤 ‘ 𝑧 ) ) ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑧 ) |
| 71 |
3
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝑧 ∈ 𝐴 ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
| 72 |
71
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑧 ) = ( ( 𝑧 ∈ 𝐴 ↦ ( 𝐺 ‘ 𝑥 ) ) ‘ 𝑧 ) ) |
| 73 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑧 ∈ 𝐴 ) |
| 74 |
6
|
fvmpt2 |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑥 ) ∈ V ) → ( ( 𝑧 ∈ 𝐴 ↦ ( 𝐺 ‘ 𝑥 ) ) ‘ 𝑧 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 75 |
73 4 74
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝑧 ∈ 𝐴 ↦ ( 𝐺 ‘ 𝑥 ) ) ‘ 𝑧 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 76 |
72 75
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝐹 ‘ 𝑥 ) ‘ 𝑧 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 77 |
70 76
|
eqtrid |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝑤 ∈ V ↦ ( 𝑤 ‘ 𝑧 ) ) ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐺 ‘ 𝑥 ) ) |
| 78 |
45 46 47 66 77
|
seqhomo |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝑤 ∈ V ↦ ( 𝑤 ‘ 𝑧 ) ) ‘ ( seq 𝑀 ( ∘f + , 𝐹 ) ‘ 𝑁 ) ) = ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) |
| 79 |
44 78
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( ( seq 𝑀 ( ∘f + , 𝐹 ) ‘ 𝑁 ) ‘ 𝑧 ) = ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) |
| 80 |
79
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝐴 ↦ ( ( seq 𝑀 ( ∘f + , 𝐹 ) ‘ 𝑁 ) ‘ 𝑧 ) ) = ( 𝑧 ∈ 𝐴 ↦ ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) ) |
| 81 |
39 80
|
eqtrd |
⊢ ( 𝜑 → ( seq 𝑀 ( ∘f + , 𝐹 ) ‘ 𝑁 ) = ( 𝑧 ∈ 𝐴 ↦ ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) ) |