Step |
Hyp |
Ref |
Expression |
1 |
|
seqof2.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
2 |
|
seqof2.2 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
3 |
|
seqof2.3 |
⊢ ( 𝜑 → ( 𝑀 ... 𝑁 ) ⊆ 𝐵 ) |
4 |
|
seqof2.4 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐴 ) ) → 𝑋 ∈ 𝑊 ) |
5 |
|
nfv |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) |
6 |
|
nffvmpt1 |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑧 ∈ 𝐴 ↦ 𝑋 ) ) ‘ 𝑛 ) |
7 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐴 |
8 |
|
nffvmpt1 |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ‘ 𝑛 ) |
9 |
7 8
|
nfmpt |
⊢ Ⅎ 𝑥 ( 𝑧 ∈ 𝐴 ↦ ( ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ‘ 𝑛 ) ) |
10 |
6 9
|
nfeq |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑧 ∈ 𝐴 ↦ 𝑋 ) ) ‘ 𝑛 ) = ( 𝑧 ∈ 𝐴 ↦ ( ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ‘ 𝑛 ) ) |
11 |
5 10
|
nfim |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑧 ∈ 𝐴 ↦ 𝑋 ) ) ‘ 𝑛 ) = ( 𝑧 ∈ 𝐴 ↦ ( ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ‘ 𝑛 ) ) ) |
12 |
|
eleq1w |
⊢ ( 𝑥 = 𝑛 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↔ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) ) |
13 |
12
|
anbi2d |
⊢ ( 𝑥 = 𝑛 → ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ↔ ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) ) ) |
14 |
|
fveq2 |
⊢ ( 𝑥 = 𝑛 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑧 ∈ 𝐴 ↦ 𝑋 ) ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑧 ∈ 𝐴 ↦ 𝑋 ) ) ‘ 𝑛 ) ) |
15 |
|
fveq2 |
⊢ ( 𝑥 = 𝑛 → ( ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ‘ 𝑛 ) ) |
16 |
15
|
mpteq2dv |
⊢ ( 𝑥 = 𝑛 → ( 𝑧 ∈ 𝐴 ↦ ( ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ‘ 𝑥 ) ) = ( 𝑧 ∈ 𝐴 ↦ ( ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ‘ 𝑛 ) ) ) |
17 |
14 16
|
eqeq12d |
⊢ ( 𝑥 = 𝑛 → ( ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑧 ∈ 𝐴 ↦ 𝑋 ) ) ‘ 𝑥 ) = ( 𝑧 ∈ 𝐴 ↦ ( ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ‘ 𝑥 ) ) ↔ ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑧 ∈ 𝐴 ↦ 𝑋 ) ) ‘ 𝑛 ) = ( 𝑧 ∈ 𝐴 ↦ ( ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ‘ 𝑛 ) ) ) ) |
18 |
13 17
|
imbi12d |
⊢ ( 𝑥 = 𝑛 → ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑧 ∈ 𝐴 ↦ 𝑋 ) ) ‘ 𝑥 ) = ( 𝑧 ∈ 𝐴 ↦ ( ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ‘ 𝑥 ) ) ) ↔ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑧 ∈ 𝐴 ↦ 𝑋 ) ) ‘ 𝑛 ) = ( 𝑧 ∈ 𝐴 ↦ ( ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ‘ 𝑛 ) ) ) ) ) |
19 |
3
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑥 ∈ 𝐵 ) |
20 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐴 ∈ 𝑉 ) |
21 |
20
|
mptexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝑧 ∈ 𝐴 ↦ 𝑋 ) ∈ V ) |
22 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐵 ↦ ( 𝑧 ∈ 𝐴 ↦ 𝑋 ) ) = ( 𝑥 ∈ 𝐵 ↦ ( 𝑧 ∈ 𝐴 ↦ 𝑋 ) ) |
23 |
22
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ ( 𝑧 ∈ 𝐴 ↦ 𝑋 ) ∈ V ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑧 ∈ 𝐴 ↦ 𝑋 ) ) ‘ 𝑥 ) = ( 𝑧 ∈ 𝐴 ↦ 𝑋 ) ) |
24 |
19 21 23
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑧 ∈ 𝐴 ↦ 𝑋 ) ) ‘ 𝑥 ) = ( 𝑧 ∈ 𝐴 ↦ 𝑋 ) ) |
25 |
19
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑧 ∈ 𝐴 ) → 𝑥 ∈ 𝐵 ) |
26 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑧 ∈ 𝐴 ) → 𝜑 ) |
27 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) |
28 |
26 25 27 4
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑧 ∈ 𝐴 ) → 𝑋 ∈ 𝑊 ) |
29 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) = ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) |
30 |
29
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝑊 ) → ( ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ‘ 𝑥 ) = 𝑋 ) |
31 |
25 28 30
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ‘ 𝑥 ) = 𝑋 ) |
32 |
31
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝑧 ∈ 𝐴 ↦ ( ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ‘ 𝑥 ) ) = ( 𝑧 ∈ 𝐴 ↦ 𝑋 ) ) |
33 |
24 32
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑧 ∈ 𝐴 ↦ 𝑋 ) ) ‘ 𝑥 ) = ( 𝑧 ∈ 𝐴 ↦ ( ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ‘ 𝑥 ) ) ) |
34 |
11 18 33
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑧 ∈ 𝐴 ↦ 𝑋 ) ) ‘ 𝑛 ) = ( 𝑧 ∈ 𝐴 ↦ ( ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ‘ 𝑛 ) ) ) |
35 |
|
nfcv |
⊢ Ⅎ 𝑦 ( ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ‘ 𝑛 ) |
36 |
|
nfcsb1v |
⊢ Ⅎ 𝑧 ⦋ 𝑦 / 𝑧 ⦌ ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) |
37 |
|
nfcv |
⊢ Ⅎ 𝑧 𝑛 |
38 |
36 37
|
nffv |
⊢ Ⅎ 𝑧 ( ⦋ 𝑦 / 𝑧 ⦌ ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ‘ 𝑛 ) |
39 |
|
csbeq1a |
⊢ ( 𝑧 = 𝑦 → ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) = ⦋ 𝑦 / 𝑧 ⦌ ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ) |
40 |
39
|
fveq1d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ‘ 𝑛 ) = ( ⦋ 𝑦 / 𝑧 ⦌ ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ‘ 𝑛 ) ) |
41 |
35 38 40
|
cbvmpt |
⊢ ( 𝑧 ∈ 𝐴 ↦ ( ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ‘ 𝑛 ) ) = ( 𝑦 ∈ 𝐴 ↦ ( ⦋ 𝑦 / 𝑧 ⦌ ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ‘ 𝑛 ) ) |
42 |
34 41
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑧 ∈ 𝐴 ↦ 𝑋 ) ) ‘ 𝑛 ) = ( 𝑦 ∈ 𝐴 ↦ ( ⦋ 𝑦 / 𝑧 ⦌ ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ‘ 𝑛 ) ) ) |
43 |
1 2 42
|
seqof |
⊢ ( 𝜑 → ( seq 𝑀 ( ∘f + , ( 𝑥 ∈ 𝐵 ↦ ( 𝑧 ∈ 𝐴 ↦ 𝑋 ) ) ) ‘ 𝑁 ) = ( 𝑦 ∈ 𝐴 ↦ ( seq 𝑀 ( + , ⦋ 𝑦 / 𝑧 ⦌ ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ) ‘ 𝑁 ) ) ) |
44 |
|
nfcv |
⊢ Ⅎ 𝑦 ( seq 𝑀 ( + , ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ) ‘ 𝑁 ) |
45 |
|
nfcv |
⊢ Ⅎ 𝑧 𝑀 |
46 |
|
nfcv |
⊢ Ⅎ 𝑧 + |
47 |
45 46 36
|
nfseq |
⊢ Ⅎ 𝑧 seq 𝑀 ( + , ⦋ 𝑦 / 𝑧 ⦌ ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ) |
48 |
|
nfcv |
⊢ Ⅎ 𝑧 𝑁 |
49 |
47 48
|
nffv |
⊢ Ⅎ 𝑧 ( seq 𝑀 ( + , ⦋ 𝑦 / 𝑧 ⦌ ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ) ‘ 𝑁 ) |
50 |
39
|
seqeq3d |
⊢ ( 𝑧 = 𝑦 → seq 𝑀 ( + , ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ) = seq 𝑀 ( + , ⦋ 𝑦 / 𝑧 ⦌ ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ) ) |
51 |
50
|
fveq1d |
⊢ ( 𝑧 = 𝑦 → ( seq 𝑀 ( + , ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , ⦋ 𝑦 / 𝑧 ⦌ ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ) ‘ 𝑁 ) ) |
52 |
44 49 51
|
cbvmpt |
⊢ ( 𝑧 ∈ 𝐴 ↦ ( seq 𝑀 ( + , ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ) ‘ 𝑁 ) ) = ( 𝑦 ∈ 𝐴 ↦ ( seq 𝑀 ( + , ⦋ 𝑦 / 𝑧 ⦌ ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ) ‘ 𝑁 ) ) |
53 |
43 52
|
eqtr4di |
⊢ ( 𝜑 → ( seq 𝑀 ( ∘f + , ( 𝑥 ∈ 𝐵 ↦ ( 𝑧 ∈ 𝐴 ↦ 𝑋 ) ) ) ‘ 𝑁 ) = ( 𝑧 ∈ 𝐴 ↦ ( seq 𝑀 ( + , ( 𝑥 ∈ 𝐵 ↦ 𝑋 ) ) ‘ 𝑁 ) ) ) |