| Step | Hyp | Ref | Expression | 
						
							| 1 |  | seqom.a | ⊢ 𝐺  =  seqω ( 𝐹 ,  𝐼 ) | 
						
							| 2 |  | df-seqom | ⊢ seqω ( 𝐹 ,  𝐼 )  =  ( rec ( ( 𝑎  ∈  ω ,  𝑏  ∈  V  ↦  〈 suc  𝑎 ,  ( 𝑎 𝐹 𝑏 ) 〉 ) ,  〈 ∅ ,  (  I  ‘ 𝐼 ) 〉 )  “  ω ) | 
						
							| 3 | 1 2 | eqtri | ⊢ 𝐺  =  ( rec ( ( 𝑎  ∈  ω ,  𝑏  ∈  V  ↦  〈 suc  𝑎 ,  ( 𝑎 𝐹 𝑏 ) 〉 ) ,  〈 ∅ ,  (  I  ‘ 𝐼 ) 〉 )  “  ω ) | 
						
							| 4 | 3 | fveq1i | ⊢ ( 𝐺 ‘ ∅ )  =  ( ( rec ( ( 𝑎  ∈  ω ,  𝑏  ∈  V  ↦  〈 suc  𝑎 ,  ( 𝑎 𝐹 𝑏 ) 〉 ) ,  〈 ∅ ,  (  I  ‘ 𝐼 ) 〉 )  “  ω ) ‘ ∅ ) | 
						
							| 5 |  | seqomlem0 | ⊢ rec ( ( 𝑎  ∈  ω ,  𝑏  ∈  V  ↦  〈 suc  𝑎 ,  ( 𝑎 𝐹 𝑏 ) 〉 ) ,  〈 ∅ ,  (  I  ‘ 𝐼 ) 〉 )  =  rec ( ( 𝑐  ∈  ω ,  𝑑  ∈  V  ↦  〈 suc  𝑐 ,  ( 𝑐 𝐹 𝑑 ) 〉 ) ,  〈 ∅ ,  (  I  ‘ 𝐼 ) 〉 ) | 
						
							| 6 | 5 | seqomlem3 | ⊢ ( ( rec ( ( 𝑎  ∈  ω ,  𝑏  ∈  V  ↦  〈 suc  𝑎 ,  ( 𝑎 𝐹 𝑏 ) 〉 ) ,  〈 ∅ ,  (  I  ‘ 𝐼 ) 〉 )  “  ω ) ‘ ∅ )  =  (  I  ‘ 𝐼 ) | 
						
							| 7 | 4 6 | eqtri | ⊢ ( 𝐺 ‘ ∅ )  =  (  I  ‘ 𝐼 ) | 
						
							| 8 |  | fvi | ⊢ ( 𝐼  ∈  𝑉  →  (  I  ‘ 𝐼 )  =  𝐼 ) | 
						
							| 9 | 7 8 | eqtrid | ⊢ ( 𝐼  ∈  𝑉  →  ( 𝐺 ‘ ∅ )  =  𝐼 ) |