Step |
Hyp |
Ref |
Expression |
1 |
|
seqomlem.a |
⊢ 𝑄 = rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) |
2 |
|
fveq2 |
⊢ ( 𝑎 = ∅ → ( 𝑄 ‘ 𝑎 ) = ( 𝑄 ‘ ∅ ) ) |
3 |
|
id |
⊢ ( 𝑎 = ∅ → 𝑎 = ∅ ) |
4 |
|
2fveq3 |
⊢ ( 𝑎 = ∅ → ( 2nd ‘ ( 𝑄 ‘ 𝑎 ) ) = ( 2nd ‘ ( 𝑄 ‘ ∅ ) ) ) |
5 |
3 4
|
opeq12d |
⊢ ( 𝑎 = ∅ → 〈 𝑎 , ( 2nd ‘ ( 𝑄 ‘ 𝑎 ) ) 〉 = 〈 ∅ , ( 2nd ‘ ( 𝑄 ‘ ∅ ) ) 〉 ) |
6 |
2 5
|
eqeq12d |
⊢ ( 𝑎 = ∅ → ( ( 𝑄 ‘ 𝑎 ) = 〈 𝑎 , ( 2nd ‘ ( 𝑄 ‘ 𝑎 ) ) 〉 ↔ ( 𝑄 ‘ ∅ ) = 〈 ∅ , ( 2nd ‘ ( 𝑄 ‘ ∅ ) ) 〉 ) ) |
7 |
|
fveq2 |
⊢ ( 𝑎 = 𝑏 → ( 𝑄 ‘ 𝑎 ) = ( 𝑄 ‘ 𝑏 ) ) |
8 |
|
id |
⊢ ( 𝑎 = 𝑏 → 𝑎 = 𝑏 ) |
9 |
|
2fveq3 |
⊢ ( 𝑎 = 𝑏 → ( 2nd ‘ ( 𝑄 ‘ 𝑎 ) ) = ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) |
10 |
8 9
|
opeq12d |
⊢ ( 𝑎 = 𝑏 → 〈 𝑎 , ( 2nd ‘ ( 𝑄 ‘ 𝑎 ) ) 〉 = 〈 𝑏 , ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) 〉 ) |
11 |
7 10
|
eqeq12d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝑄 ‘ 𝑎 ) = 〈 𝑎 , ( 2nd ‘ ( 𝑄 ‘ 𝑎 ) ) 〉 ↔ ( 𝑄 ‘ 𝑏 ) = 〈 𝑏 , ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) 〉 ) ) |
12 |
|
fveq2 |
⊢ ( 𝑎 = suc 𝑏 → ( 𝑄 ‘ 𝑎 ) = ( 𝑄 ‘ suc 𝑏 ) ) |
13 |
|
id |
⊢ ( 𝑎 = suc 𝑏 → 𝑎 = suc 𝑏 ) |
14 |
|
2fveq3 |
⊢ ( 𝑎 = suc 𝑏 → ( 2nd ‘ ( 𝑄 ‘ 𝑎 ) ) = ( 2nd ‘ ( 𝑄 ‘ suc 𝑏 ) ) ) |
15 |
13 14
|
opeq12d |
⊢ ( 𝑎 = suc 𝑏 → 〈 𝑎 , ( 2nd ‘ ( 𝑄 ‘ 𝑎 ) ) 〉 = 〈 suc 𝑏 , ( 2nd ‘ ( 𝑄 ‘ suc 𝑏 ) ) 〉 ) |
16 |
12 15
|
eqeq12d |
⊢ ( 𝑎 = suc 𝑏 → ( ( 𝑄 ‘ 𝑎 ) = 〈 𝑎 , ( 2nd ‘ ( 𝑄 ‘ 𝑎 ) ) 〉 ↔ ( 𝑄 ‘ suc 𝑏 ) = 〈 suc 𝑏 , ( 2nd ‘ ( 𝑄 ‘ suc 𝑏 ) ) 〉 ) ) |
17 |
|
fveq2 |
⊢ ( 𝑎 = 𝐴 → ( 𝑄 ‘ 𝑎 ) = ( 𝑄 ‘ 𝐴 ) ) |
18 |
|
id |
⊢ ( 𝑎 = 𝐴 → 𝑎 = 𝐴 ) |
19 |
|
2fveq3 |
⊢ ( 𝑎 = 𝐴 → ( 2nd ‘ ( 𝑄 ‘ 𝑎 ) ) = ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) ) |
20 |
18 19
|
opeq12d |
⊢ ( 𝑎 = 𝐴 → 〈 𝑎 , ( 2nd ‘ ( 𝑄 ‘ 𝑎 ) ) 〉 = 〈 𝐴 , ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) 〉 ) |
21 |
17 20
|
eqeq12d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑄 ‘ 𝑎 ) = 〈 𝑎 , ( 2nd ‘ ( 𝑄 ‘ 𝑎 ) ) 〉 ↔ ( 𝑄 ‘ 𝐴 ) = 〈 𝐴 , ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) 〉 ) ) |
22 |
1
|
fveq1i |
⊢ ( 𝑄 ‘ ∅ ) = ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ‘ ∅ ) |
23 |
|
opex |
⊢ 〈 ∅ , ( I ‘ 𝐼 ) 〉 ∈ V |
24 |
23
|
rdg0 |
⊢ ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ‘ ∅ ) = 〈 ∅ , ( I ‘ 𝐼 ) 〉 |
25 |
22 24
|
eqtri |
⊢ ( 𝑄 ‘ ∅ ) = 〈 ∅ , ( I ‘ 𝐼 ) 〉 |
26 |
|
0ex |
⊢ ∅ ∈ V |
27 |
|
fvex |
⊢ ( I ‘ 𝐼 ) ∈ V |
28 |
26 27
|
op2nd |
⊢ ( 2nd ‘ 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) = ( I ‘ 𝐼 ) |
29 |
28
|
eqcomi |
⊢ ( I ‘ 𝐼 ) = ( 2nd ‘ 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) |
30 |
29
|
opeq2i |
⊢ 〈 ∅ , ( I ‘ 𝐼 ) 〉 = 〈 ∅ , ( 2nd ‘ 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) 〉 |
31 |
|
id |
⊢ ( ( 𝑄 ‘ ∅ ) = 〈 ∅ , ( I ‘ 𝐼 ) 〉 → ( 𝑄 ‘ ∅ ) = 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) |
32 |
|
fveq2 |
⊢ ( ( 𝑄 ‘ ∅ ) = 〈 ∅ , ( I ‘ 𝐼 ) 〉 → ( 2nd ‘ ( 𝑄 ‘ ∅ ) ) = ( 2nd ‘ 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ) |
33 |
32
|
opeq2d |
⊢ ( ( 𝑄 ‘ ∅ ) = 〈 ∅ , ( I ‘ 𝐼 ) 〉 → 〈 ∅ , ( 2nd ‘ ( 𝑄 ‘ ∅ ) ) 〉 = 〈 ∅ , ( 2nd ‘ 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) 〉 ) |
34 |
30 31 33
|
3eqtr4a |
⊢ ( ( 𝑄 ‘ ∅ ) = 〈 ∅ , ( I ‘ 𝐼 ) 〉 → ( 𝑄 ‘ ∅ ) = 〈 ∅ , ( 2nd ‘ ( 𝑄 ‘ ∅ ) ) 〉 ) |
35 |
25 34
|
ax-mp |
⊢ ( 𝑄 ‘ ∅ ) = 〈 ∅ , ( 2nd ‘ ( 𝑄 ‘ ∅ ) ) 〉 |
36 |
|
df-ov |
⊢ ( 𝑏 ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) = ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ 〈 𝑏 , ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) 〉 ) |
37 |
|
fvex |
⊢ ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ∈ V |
38 |
|
suceq |
⊢ ( 𝑖 = 𝑏 → suc 𝑖 = suc 𝑏 ) |
39 |
|
oveq1 |
⊢ ( 𝑖 = 𝑏 → ( 𝑖 𝐹 𝑣 ) = ( 𝑏 𝐹 𝑣 ) ) |
40 |
38 39
|
opeq12d |
⊢ ( 𝑖 = 𝑏 → 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 = 〈 suc 𝑏 , ( 𝑏 𝐹 𝑣 ) 〉 ) |
41 |
|
oveq2 |
⊢ ( 𝑣 = ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) → ( 𝑏 𝐹 𝑣 ) = ( 𝑏 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) ) |
42 |
41
|
opeq2d |
⊢ ( 𝑣 = ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) → 〈 suc 𝑏 , ( 𝑏 𝐹 𝑣 ) 〉 = 〈 suc 𝑏 , ( 𝑏 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) 〉 ) |
43 |
|
eqid |
⊢ ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) = ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) |
44 |
|
opex |
⊢ 〈 suc 𝑏 , ( 𝑏 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) 〉 ∈ V |
45 |
40 42 43 44
|
ovmpo |
⊢ ( ( 𝑏 ∈ ω ∧ ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ∈ V ) → ( 𝑏 ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) = 〈 suc 𝑏 , ( 𝑏 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) 〉 ) |
46 |
37 45
|
mpan2 |
⊢ ( 𝑏 ∈ ω → ( 𝑏 ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) = 〈 suc 𝑏 , ( 𝑏 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) 〉 ) |
47 |
36 46
|
eqtr3id |
⊢ ( 𝑏 ∈ ω → ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ 〈 𝑏 , ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) 〉 ) = 〈 suc 𝑏 , ( 𝑏 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) 〉 ) |
48 |
|
fveqeq2 |
⊢ ( ( 𝑄 ‘ 𝑏 ) = 〈 𝑏 , ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) 〉 → ( ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( 𝑄 ‘ 𝑏 ) ) = 〈 suc 𝑏 , ( 𝑏 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) 〉 ↔ ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ 〈 𝑏 , ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) 〉 ) = 〈 suc 𝑏 , ( 𝑏 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) 〉 ) ) |
49 |
47 48
|
syl5ibrcom |
⊢ ( 𝑏 ∈ ω → ( ( 𝑄 ‘ 𝑏 ) = 〈 𝑏 , ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) 〉 → ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( 𝑄 ‘ 𝑏 ) ) = 〈 suc 𝑏 , ( 𝑏 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) 〉 ) ) |
50 |
|
vex |
⊢ 𝑏 ∈ V |
51 |
50
|
sucex |
⊢ suc 𝑏 ∈ V |
52 |
|
ovex |
⊢ ( 𝑏 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) ∈ V |
53 |
51 52
|
op2nd |
⊢ ( 2nd ‘ 〈 suc 𝑏 , ( 𝑏 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) 〉 ) = ( 𝑏 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) |
54 |
53
|
eqcomi |
⊢ ( 𝑏 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) = ( 2nd ‘ 〈 suc 𝑏 , ( 𝑏 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) 〉 ) |
55 |
54
|
a1i |
⊢ ( 𝑏 ∈ ω → ( 𝑏 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) = ( 2nd ‘ 〈 suc 𝑏 , ( 𝑏 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) 〉 ) ) |
56 |
55
|
opeq2d |
⊢ ( 𝑏 ∈ ω → 〈 suc 𝑏 , ( 𝑏 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) 〉 = 〈 suc 𝑏 , ( 2nd ‘ 〈 suc 𝑏 , ( 𝑏 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) 〉 ) 〉 ) |
57 |
|
id |
⊢ ( ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( 𝑄 ‘ 𝑏 ) ) = 〈 suc 𝑏 , ( 𝑏 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) 〉 → ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( 𝑄 ‘ 𝑏 ) ) = 〈 suc 𝑏 , ( 𝑏 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) 〉 ) |
58 |
|
fveq2 |
⊢ ( ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( 𝑄 ‘ 𝑏 ) ) = 〈 suc 𝑏 , ( 𝑏 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) 〉 → ( 2nd ‘ ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( 𝑄 ‘ 𝑏 ) ) ) = ( 2nd ‘ 〈 suc 𝑏 , ( 𝑏 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) 〉 ) ) |
59 |
58
|
opeq2d |
⊢ ( ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( 𝑄 ‘ 𝑏 ) ) = 〈 suc 𝑏 , ( 𝑏 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) 〉 → 〈 suc 𝑏 , ( 2nd ‘ ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( 𝑄 ‘ 𝑏 ) ) ) 〉 = 〈 suc 𝑏 , ( 2nd ‘ 〈 suc 𝑏 , ( 𝑏 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) 〉 ) 〉 ) |
60 |
57 59
|
eqeq12d |
⊢ ( ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( 𝑄 ‘ 𝑏 ) ) = 〈 suc 𝑏 , ( 𝑏 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) 〉 → ( ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( 𝑄 ‘ 𝑏 ) ) = 〈 suc 𝑏 , ( 2nd ‘ ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( 𝑄 ‘ 𝑏 ) ) ) 〉 ↔ 〈 suc 𝑏 , ( 𝑏 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) 〉 = 〈 suc 𝑏 , ( 2nd ‘ 〈 suc 𝑏 , ( 𝑏 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) 〉 ) 〉 ) ) |
61 |
56 60
|
syl5ibrcom |
⊢ ( 𝑏 ∈ ω → ( ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( 𝑄 ‘ 𝑏 ) ) = 〈 suc 𝑏 , ( 𝑏 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) 〉 → ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( 𝑄 ‘ 𝑏 ) ) = 〈 suc 𝑏 , ( 2nd ‘ ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( 𝑄 ‘ 𝑏 ) ) ) 〉 ) ) |
62 |
49 61
|
syld |
⊢ ( 𝑏 ∈ ω → ( ( 𝑄 ‘ 𝑏 ) = 〈 𝑏 , ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) 〉 → ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( 𝑄 ‘ 𝑏 ) ) = 〈 suc 𝑏 , ( 2nd ‘ ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( 𝑄 ‘ 𝑏 ) ) ) 〉 ) ) |
63 |
|
frsuc |
⊢ ( 𝑏 ∈ ω → ( ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ↾ ω ) ‘ suc 𝑏 ) = ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ↾ ω ) ‘ 𝑏 ) ) ) |
64 |
|
peano2 |
⊢ ( 𝑏 ∈ ω → suc 𝑏 ∈ ω ) |
65 |
64
|
fvresd |
⊢ ( 𝑏 ∈ ω → ( ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ↾ ω ) ‘ suc 𝑏 ) = ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ‘ suc 𝑏 ) ) |
66 |
1
|
fveq1i |
⊢ ( 𝑄 ‘ suc 𝑏 ) = ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ‘ suc 𝑏 ) |
67 |
65 66
|
eqtr4di |
⊢ ( 𝑏 ∈ ω → ( ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ↾ ω ) ‘ suc 𝑏 ) = ( 𝑄 ‘ suc 𝑏 ) ) |
68 |
|
fvres |
⊢ ( 𝑏 ∈ ω → ( ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ↾ ω ) ‘ 𝑏 ) = ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ‘ 𝑏 ) ) |
69 |
1
|
fveq1i |
⊢ ( 𝑄 ‘ 𝑏 ) = ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ‘ 𝑏 ) |
70 |
68 69
|
eqtr4di |
⊢ ( 𝑏 ∈ ω → ( ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ↾ ω ) ‘ 𝑏 ) = ( 𝑄 ‘ 𝑏 ) ) |
71 |
70
|
fveq2d |
⊢ ( 𝑏 ∈ ω → ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ↾ ω ) ‘ 𝑏 ) ) = ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( 𝑄 ‘ 𝑏 ) ) ) |
72 |
63 67 71
|
3eqtr3d |
⊢ ( 𝑏 ∈ ω → ( 𝑄 ‘ suc 𝑏 ) = ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( 𝑄 ‘ 𝑏 ) ) ) |
73 |
72
|
fveq2d |
⊢ ( 𝑏 ∈ ω → ( 2nd ‘ ( 𝑄 ‘ suc 𝑏 ) ) = ( 2nd ‘ ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( 𝑄 ‘ 𝑏 ) ) ) ) |
74 |
73
|
opeq2d |
⊢ ( 𝑏 ∈ ω → 〈 suc 𝑏 , ( 2nd ‘ ( 𝑄 ‘ suc 𝑏 ) ) 〉 = 〈 suc 𝑏 , ( 2nd ‘ ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( 𝑄 ‘ 𝑏 ) ) ) 〉 ) |
75 |
72 74
|
eqeq12d |
⊢ ( 𝑏 ∈ ω → ( ( 𝑄 ‘ suc 𝑏 ) = 〈 suc 𝑏 , ( 2nd ‘ ( 𝑄 ‘ suc 𝑏 ) ) 〉 ↔ ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( 𝑄 ‘ 𝑏 ) ) = 〈 suc 𝑏 , ( 2nd ‘ ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( 𝑄 ‘ 𝑏 ) ) ) 〉 ) ) |
76 |
62 75
|
sylibrd |
⊢ ( 𝑏 ∈ ω → ( ( 𝑄 ‘ 𝑏 ) = 〈 𝑏 , ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) 〉 → ( 𝑄 ‘ suc 𝑏 ) = 〈 suc 𝑏 , ( 2nd ‘ ( 𝑄 ‘ suc 𝑏 ) ) 〉 ) ) |
77 |
6 11 16 21 35 76
|
finds |
⊢ ( 𝐴 ∈ ω → ( 𝑄 ‘ 𝐴 ) = 〈 𝐴 , ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) 〉 ) |