| Step | Hyp | Ref | Expression | 
						
							| 1 |  | seqomlem.a | ⊢ 𝑄  =  rec ( ( 𝑖  ∈  ω ,  𝑣  ∈  V  ↦  〈 suc  𝑖 ,  ( 𝑖 𝐹 𝑣 ) 〉 ) ,  〈 ∅ ,  (  I  ‘ 𝐼 ) 〉 ) | 
						
							| 2 |  | peano2 | ⊢ ( 𝐴  ∈  ω  →  suc  𝐴  ∈  ω ) | 
						
							| 3 | 2 | fvresd | ⊢ ( 𝐴  ∈  ω  →  ( ( 𝑄  ↾  ω ) ‘ suc  𝐴 )  =  ( 𝑄 ‘ suc  𝐴 ) ) | 
						
							| 4 |  | frsuc | ⊢ ( 𝐴  ∈  ω  →  ( ( rec ( ( 𝑖  ∈  ω ,  𝑣  ∈  V  ↦  〈 suc  𝑖 ,  ( 𝑖 𝐹 𝑣 ) 〉 ) ,  〈 ∅ ,  (  I  ‘ 𝐼 ) 〉 )  ↾  ω ) ‘ suc  𝐴 )  =  ( ( 𝑖  ∈  ω ,  𝑣  ∈  V  ↦  〈 suc  𝑖 ,  ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( ( rec ( ( 𝑖  ∈  ω ,  𝑣  ∈  V  ↦  〈 suc  𝑖 ,  ( 𝑖 𝐹 𝑣 ) 〉 ) ,  〈 ∅ ,  (  I  ‘ 𝐼 ) 〉 )  ↾  ω ) ‘ 𝐴 ) ) ) | 
						
							| 5 | 2 | fvresd | ⊢ ( 𝐴  ∈  ω  →  ( ( rec ( ( 𝑖  ∈  ω ,  𝑣  ∈  V  ↦  〈 suc  𝑖 ,  ( 𝑖 𝐹 𝑣 ) 〉 ) ,  〈 ∅ ,  (  I  ‘ 𝐼 ) 〉 )  ↾  ω ) ‘ suc  𝐴 )  =  ( rec ( ( 𝑖  ∈  ω ,  𝑣  ∈  V  ↦  〈 suc  𝑖 ,  ( 𝑖 𝐹 𝑣 ) 〉 ) ,  〈 ∅ ,  (  I  ‘ 𝐼 ) 〉 ) ‘ suc  𝐴 ) ) | 
						
							| 6 | 1 | fveq1i | ⊢ ( 𝑄 ‘ suc  𝐴 )  =  ( rec ( ( 𝑖  ∈  ω ,  𝑣  ∈  V  ↦  〈 suc  𝑖 ,  ( 𝑖 𝐹 𝑣 ) 〉 ) ,  〈 ∅ ,  (  I  ‘ 𝐼 ) 〉 ) ‘ suc  𝐴 ) | 
						
							| 7 | 5 6 | eqtr4di | ⊢ ( 𝐴  ∈  ω  →  ( ( rec ( ( 𝑖  ∈  ω ,  𝑣  ∈  V  ↦  〈 suc  𝑖 ,  ( 𝑖 𝐹 𝑣 ) 〉 ) ,  〈 ∅ ,  (  I  ‘ 𝐼 ) 〉 )  ↾  ω ) ‘ suc  𝐴 )  =  ( 𝑄 ‘ suc  𝐴 ) ) | 
						
							| 8 |  | fvres | ⊢ ( 𝐴  ∈  ω  →  ( ( rec ( ( 𝑖  ∈  ω ,  𝑣  ∈  V  ↦  〈 suc  𝑖 ,  ( 𝑖 𝐹 𝑣 ) 〉 ) ,  〈 ∅ ,  (  I  ‘ 𝐼 ) 〉 )  ↾  ω ) ‘ 𝐴 )  =  ( rec ( ( 𝑖  ∈  ω ,  𝑣  ∈  V  ↦  〈 suc  𝑖 ,  ( 𝑖 𝐹 𝑣 ) 〉 ) ,  〈 ∅ ,  (  I  ‘ 𝐼 ) 〉 ) ‘ 𝐴 ) ) | 
						
							| 9 | 1 | fveq1i | ⊢ ( 𝑄 ‘ 𝐴 )  =  ( rec ( ( 𝑖  ∈  ω ,  𝑣  ∈  V  ↦  〈 suc  𝑖 ,  ( 𝑖 𝐹 𝑣 ) 〉 ) ,  〈 ∅ ,  (  I  ‘ 𝐼 ) 〉 ) ‘ 𝐴 ) | 
						
							| 10 | 8 9 | eqtr4di | ⊢ ( 𝐴  ∈  ω  →  ( ( rec ( ( 𝑖  ∈  ω ,  𝑣  ∈  V  ↦  〈 suc  𝑖 ,  ( 𝑖 𝐹 𝑣 ) 〉 ) ,  〈 ∅ ,  (  I  ‘ 𝐼 ) 〉 )  ↾  ω ) ‘ 𝐴 )  =  ( 𝑄 ‘ 𝐴 ) ) | 
						
							| 11 | 10 | fveq2d | ⊢ ( 𝐴  ∈  ω  →  ( ( 𝑖  ∈  ω ,  𝑣  ∈  V  ↦  〈 suc  𝑖 ,  ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( ( rec ( ( 𝑖  ∈  ω ,  𝑣  ∈  V  ↦  〈 suc  𝑖 ,  ( 𝑖 𝐹 𝑣 ) 〉 ) ,  〈 ∅ ,  (  I  ‘ 𝐼 ) 〉 )  ↾  ω ) ‘ 𝐴 ) )  =  ( ( 𝑖  ∈  ω ,  𝑣  ∈  V  ↦  〈 suc  𝑖 ,  ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( 𝑄 ‘ 𝐴 ) ) ) | 
						
							| 12 | 4 7 11 | 3eqtr3d | ⊢ ( 𝐴  ∈  ω  →  ( 𝑄 ‘ suc  𝐴 )  =  ( ( 𝑖  ∈  ω ,  𝑣  ∈  V  ↦  〈 suc  𝑖 ,  ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( 𝑄 ‘ 𝐴 ) ) ) | 
						
							| 13 | 1 | seqomlem1 | ⊢ ( 𝐴  ∈  ω  →  ( 𝑄 ‘ 𝐴 )  =  〈 𝐴 ,  ( 2nd  ‘ ( 𝑄 ‘ 𝐴 ) ) 〉 ) | 
						
							| 14 | 13 | fveq2d | ⊢ ( 𝐴  ∈  ω  →  ( ( 𝑖  ∈  ω ,  𝑣  ∈  V  ↦  〈 suc  𝑖 ,  ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( 𝑄 ‘ 𝐴 ) )  =  ( ( 𝑖  ∈  ω ,  𝑣  ∈  V  ↦  〈 suc  𝑖 ,  ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ 〈 𝐴 ,  ( 2nd  ‘ ( 𝑄 ‘ 𝐴 ) ) 〉 ) ) | 
						
							| 15 |  | df-ov | ⊢ ( 𝐴 ( 𝑖  ∈  ω ,  𝑣  ∈  V  ↦  〈 suc  𝑖 ,  ( 𝑖 𝐹 𝑣 ) 〉 ) ( 2nd  ‘ ( 𝑄 ‘ 𝐴 ) ) )  =  ( ( 𝑖  ∈  ω ,  𝑣  ∈  V  ↦  〈 suc  𝑖 ,  ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ 〈 𝐴 ,  ( 2nd  ‘ ( 𝑄 ‘ 𝐴 ) ) 〉 ) | 
						
							| 16 |  | fvex | ⊢ ( 2nd  ‘ ( 𝑄 ‘ 𝐴 ) )  ∈  V | 
						
							| 17 |  | suceq | ⊢ ( 𝑖  =  𝐴  →  suc  𝑖  =  suc  𝐴 ) | 
						
							| 18 |  | oveq1 | ⊢ ( 𝑖  =  𝐴  →  ( 𝑖 𝐹 𝑣 )  =  ( 𝐴 𝐹 𝑣 ) ) | 
						
							| 19 | 17 18 | opeq12d | ⊢ ( 𝑖  =  𝐴  →  〈 suc  𝑖 ,  ( 𝑖 𝐹 𝑣 ) 〉  =  〈 suc  𝐴 ,  ( 𝐴 𝐹 𝑣 ) 〉 ) | 
						
							| 20 |  | oveq2 | ⊢ ( 𝑣  =  ( 2nd  ‘ ( 𝑄 ‘ 𝐴 ) )  →  ( 𝐴 𝐹 𝑣 )  =  ( 𝐴 𝐹 ( 2nd  ‘ ( 𝑄 ‘ 𝐴 ) ) ) ) | 
						
							| 21 | 20 | opeq2d | ⊢ ( 𝑣  =  ( 2nd  ‘ ( 𝑄 ‘ 𝐴 ) )  →  〈 suc  𝐴 ,  ( 𝐴 𝐹 𝑣 ) 〉  =  〈 suc  𝐴 ,  ( 𝐴 𝐹 ( 2nd  ‘ ( 𝑄 ‘ 𝐴 ) ) ) 〉 ) | 
						
							| 22 |  | eqid | ⊢ ( 𝑖  ∈  ω ,  𝑣  ∈  V  ↦  〈 suc  𝑖 ,  ( 𝑖 𝐹 𝑣 ) 〉 )  =  ( 𝑖  ∈  ω ,  𝑣  ∈  V  ↦  〈 suc  𝑖 ,  ( 𝑖 𝐹 𝑣 ) 〉 ) | 
						
							| 23 |  | opex | ⊢ 〈 suc  𝐴 ,  ( 𝐴 𝐹 ( 2nd  ‘ ( 𝑄 ‘ 𝐴 ) ) ) 〉  ∈  V | 
						
							| 24 | 19 21 22 23 | ovmpo | ⊢ ( ( 𝐴  ∈  ω  ∧  ( 2nd  ‘ ( 𝑄 ‘ 𝐴 ) )  ∈  V )  →  ( 𝐴 ( 𝑖  ∈  ω ,  𝑣  ∈  V  ↦  〈 suc  𝑖 ,  ( 𝑖 𝐹 𝑣 ) 〉 ) ( 2nd  ‘ ( 𝑄 ‘ 𝐴 ) ) )  =  〈 suc  𝐴 ,  ( 𝐴 𝐹 ( 2nd  ‘ ( 𝑄 ‘ 𝐴 ) ) ) 〉 ) | 
						
							| 25 | 16 24 | mpan2 | ⊢ ( 𝐴  ∈  ω  →  ( 𝐴 ( 𝑖  ∈  ω ,  𝑣  ∈  V  ↦  〈 suc  𝑖 ,  ( 𝑖 𝐹 𝑣 ) 〉 ) ( 2nd  ‘ ( 𝑄 ‘ 𝐴 ) ) )  =  〈 suc  𝐴 ,  ( 𝐴 𝐹 ( 2nd  ‘ ( 𝑄 ‘ 𝐴 ) ) ) 〉 ) | 
						
							| 26 |  | fvres | ⊢ ( 𝐴  ∈  ω  →  ( ( 𝑄  ↾  ω ) ‘ 𝐴 )  =  ( 𝑄 ‘ 𝐴 ) ) | 
						
							| 27 | 26 13 | eqtrd | ⊢ ( 𝐴  ∈  ω  →  ( ( 𝑄  ↾  ω ) ‘ 𝐴 )  =  〈 𝐴 ,  ( 2nd  ‘ ( 𝑄 ‘ 𝐴 ) ) 〉 ) | 
						
							| 28 |  | frfnom | ⊢ ( rec ( ( 𝑖  ∈  ω ,  𝑣  ∈  V  ↦  〈 suc  𝑖 ,  ( 𝑖 𝐹 𝑣 ) 〉 ) ,  〈 ∅ ,  (  I  ‘ 𝐼 ) 〉 )  ↾  ω )  Fn  ω | 
						
							| 29 | 1 | reseq1i | ⊢ ( 𝑄  ↾  ω )  =  ( rec ( ( 𝑖  ∈  ω ,  𝑣  ∈  V  ↦  〈 suc  𝑖 ,  ( 𝑖 𝐹 𝑣 ) 〉 ) ,  〈 ∅ ,  (  I  ‘ 𝐼 ) 〉 )  ↾  ω ) | 
						
							| 30 | 29 | fneq1i | ⊢ ( ( 𝑄  ↾  ω )  Fn  ω  ↔  ( rec ( ( 𝑖  ∈  ω ,  𝑣  ∈  V  ↦  〈 suc  𝑖 ,  ( 𝑖 𝐹 𝑣 ) 〉 ) ,  〈 ∅ ,  (  I  ‘ 𝐼 ) 〉 )  ↾  ω )  Fn  ω ) | 
						
							| 31 | 28 30 | mpbir | ⊢ ( 𝑄  ↾  ω )  Fn  ω | 
						
							| 32 |  | fnfvelrn | ⊢ ( ( ( 𝑄  ↾  ω )  Fn  ω  ∧  𝐴  ∈  ω )  →  ( ( 𝑄  ↾  ω ) ‘ 𝐴 )  ∈  ran  ( 𝑄  ↾  ω ) ) | 
						
							| 33 | 31 32 | mpan | ⊢ ( 𝐴  ∈  ω  →  ( ( 𝑄  ↾  ω ) ‘ 𝐴 )  ∈  ran  ( 𝑄  ↾  ω ) ) | 
						
							| 34 | 27 33 | eqeltrrd | ⊢ ( 𝐴  ∈  ω  →  〈 𝐴 ,  ( 2nd  ‘ ( 𝑄 ‘ 𝐴 ) ) 〉  ∈  ran  ( 𝑄  ↾  ω ) ) | 
						
							| 35 |  | df-ima | ⊢ ( 𝑄  “  ω )  =  ran  ( 𝑄  ↾  ω ) | 
						
							| 36 | 34 35 | eleqtrrdi | ⊢ ( 𝐴  ∈  ω  →  〈 𝐴 ,  ( 2nd  ‘ ( 𝑄 ‘ 𝐴 ) ) 〉  ∈  ( 𝑄  “  ω ) ) | 
						
							| 37 |  | df-br | ⊢ ( 𝐴 ( 𝑄  “  ω ) ( 2nd  ‘ ( 𝑄 ‘ 𝐴 ) )  ↔  〈 𝐴 ,  ( 2nd  ‘ ( 𝑄 ‘ 𝐴 ) ) 〉  ∈  ( 𝑄  “  ω ) ) | 
						
							| 38 | 36 37 | sylibr | ⊢ ( 𝐴  ∈  ω  →  𝐴 ( 𝑄  “  ω ) ( 2nd  ‘ ( 𝑄 ‘ 𝐴 ) ) ) | 
						
							| 39 | 1 | seqomlem2 | ⊢ ( 𝑄  “  ω )  Fn  ω | 
						
							| 40 |  | fnbrfvb | ⊢ ( ( ( 𝑄  “  ω )  Fn  ω  ∧  𝐴  ∈  ω )  →  ( ( ( 𝑄  “  ω ) ‘ 𝐴 )  =  ( 2nd  ‘ ( 𝑄 ‘ 𝐴 ) )  ↔  𝐴 ( 𝑄  “  ω ) ( 2nd  ‘ ( 𝑄 ‘ 𝐴 ) ) ) ) | 
						
							| 41 | 39 40 | mpan | ⊢ ( 𝐴  ∈  ω  →  ( ( ( 𝑄  “  ω ) ‘ 𝐴 )  =  ( 2nd  ‘ ( 𝑄 ‘ 𝐴 ) )  ↔  𝐴 ( 𝑄  “  ω ) ( 2nd  ‘ ( 𝑄 ‘ 𝐴 ) ) ) ) | 
						
							| 42 | 38 41 | mpbird | ⊢ ( 𝐴  ∈  ω  →  ( ( 𝑄  “  ω ) ‘ 𝐴 )  =  ( 2nd  ‘ ( 𝑄 ‘ 𝐴 ) ) ) | 
						
							| 43 | 42 | eqcomd | ⊢ ( 𝐴  ∈  ω  →  ( 2nd  ‘ ( 𝑄 ‘ 𝐴 ) )  =  ( ( 𝑄  “  ω ) ‘ 𝐴 ) ) | 
						
							| 44 | 43 | oveq2d | ⊢ ( 𝐴  ∈  ω  →  ( 𝐴 𝐹 ( 2nd  ‘ ( 𝑄 ‘ 𝐴 ) ) )  =  ( 𝐴 𝐹 ( ( 𝑄  “  ω ) ‘ 𝐴 ) ) ) | 
						
							| 45 | 44 | opeq2d | ⊢ ( 𝐴  ∈  ω  →  〈 suc  𝐴 ,  ( 𝐴 𝐹 ( 2nd  ‘ ( 𝑄 ‘ 𝐴 ) ) ) 〉  =  〈 suc  𝐴 ,  ( 𝐴 𝐹 ( ( 𝑄  “  ω ) ‘ 𝐴 ) ) 〉 ) | 
						
							| 46 | 25 45 | eqtrd | ⊢ ( 𝐴  ∈  ω  →  ( 𝐴 ( 𝑖  ∈  ω ,  𝑣  ∈  V  ↦  〈 suc  𝑖 ,  ( 𝑖 𝐹 𝑣 ) 〉 ) ( 2nd  ‘ ( 𝑄 ‘ 𝐴 ) ) )  =  〈 suc  𝐴 ,  ( 𝐴 𝐹 ( ( 𝑄  “  ω ) ‘ 𝐴 ) ) 〉 ) | 
						
							| 47 | 15 46 | eqtr3id | ⊢ ( 𝐴  ∈  ω  →  ( ( 𝑖  ∈  ω ,  𝑣  ∈  V  ↦  〈 suc  𝑖 ,  ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ 〈 𝐴 ,  ( 2nd  ‘ ( 𝑄 ‘ 𝐴 ) ) 〉 )  =  〈 suc  𝐴 ,  ( 𝐴 𝐹 ( ( 𝑄  “  ω ) ‘ 𝐴 ) ) 〉 ) | 
						
							| 48 | 12 14 47 | 3eqtrd | ⊢ ( 𝐴  ∈  ω  →  ( 𝑄 ‘ suc  𝐴 )  =  〈 suc  𝐴 ,  ( 𝐴 𝐹 ( ( 𝑄  “  ω ) ‘ 𝐴 ) ) 〉 ) | 
						
							| 49 | 3 48 | eqtrd | ⊢ ( 𝐴  ∈  ω  →  ( ( 𝑄  ↾  ω ) ‘ suc  𝐴 )  =  〈 suc  𝐴 ,  ( 𝐴 𝐹 ( ( 𝑄  “  ω ) ‘ 𝐴 ) ) 〉 ) | 
						
							| 50 |  | fnfvelrn | ⊢ ( ( ( 𝑄  ↾  ω )  Fn  ω  ∧  suc  𝐴  ∈  ω )  →  ( ( 𝑄  ↾  ω ) ‘ suc  𝐴 )  ∈  ran  ( 𝑄  ↾  ω ) ) | 
						
							| 51 | 31 2 50 | sylancr | ⊢ ( 𝐴  ∈  ω  →  ( ( 𝑄  ↾  ω ) ‘ suc  𝐴 )  ∈  ran  ( 𝑄  ↾  ω ) ) | 
						
							| 52 | 49 51 | eqeltrrd | ⊢ ( 𝐴  ∈  ω  →  〈 suc  𝐴 ,  ( 𝐴 𝐹 ( ( 𝑄  “  ω ) ‘ 𝐴 ) ) 〉  ∈  ran  ( 𝑄  ↾  ω ) ) | 
						
							| 53 | 52 35 | eleqtrrdi | ⊢ ( 𝐴  ∈  ω  →  〈 suc  𝐴 ,  ( 𝐴 𝐹 ( ( 𝑄  “  ω ) ‘ 𝐴 ) ) 〉  ∈  ( 𝑄  “  ω ) ) | 
						
							| 54 |  | df-br | ⊢ ( suc  𝐴 ( 𝑄  “  ω ) ( 𝐴 𝐹 ( ( 𝑄  “  ω ) ‘ 𝐴 ) )  ↔  〈 suc  𝐴 ,  ( 𝐴 𝐹 ( ( 𝑄  “  ω ) ‘ 𝐴 ) ) 〉  ∈  ( 𝑄  “  ω ) ) | 
						
							| 55 | 53 54 | sylibr | ⊢ ( 𝐴  ∈  ω  →  suc  𝐴 ( 𝑄  “  ω ) ( 𝐴 𝐹 ( ( 𝑄  “  ω ) ‘ 𝐴 ) ) ) | 
						
							| 56 |  | fnbrfvb | ⊢ ( ( ( 𝑄  “  ω )  Fn  ω  ∧  suc  𝐴  ∈  ω )  →  ( ( ( 𝑄  “  ω ) ‘ suc  𝐴 )  =  ( 𝐴 𝐹 ( ( 𝑄  “  ω ) ‘ 𝐴 ) )  ↔  suc  𝐴 ( 𝑄  “  ω ) ( 𝐴 𝐹 ( ( 𝑄  “  ω ) ‘ 𝐴 ) ) ) ) | 
						
							| 57 | 39 2 56 | sylancr | ⊢ ( 𝐴  ∈  ω  →  ( ( ( 𝑄  “  ω ) ‘ suc  𝐴 )  =  ( 𝐴 𝐹 ( ( 𝑄  “  ω ) ‘ 𝐴 ) )  ↔  suc  𝐴 ( 𝑄  “  ω ) ( 𝐴 𝐹 ( ( 𝑄  “  ω ) ‘ 𝐴 ) ) ) ) | 
						
							| 58 | 55 57 | mpbird | ⊢ ( 𝐴  ∈  ω  →  ( ( 𝑄  “  ω ) ‘ suc  𝐴 )  =  ( 𝐴 𝐹 ( ( 𝑄  “  ω ) ‘ 𝐴 ) ) ) |