Step |
Hyp |
Ref |
Expression |
1 |
|
seqomlem.a |
⊢ 𝑄 = rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) |
2 |
|
peano2 |
⊢ ( 𝐴 ∈ ω → suc 𝐴 ∈ ω ) |
3 |
2
|
fvresd |
⊢ ( 𝐴 ∈ ω → ( ( 𝑄 ↾ ω ) ‘ suc 𝐴 ) = ( 𝑄 ‘ suc 𝐴 ) ) |
4 |
|
frsuc |
⊢ ( 𝐴 ∈ ω → ( ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ↾ ω ) ‘ suc 𝐴 ) = ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ↾ ω ) ‘ 𝐴 ) ) ) |
5 |
2
|
fvresd |
⊢ ( 𝐴 ∈ ω → ( ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ↾ ω ) ‘ suc 𝐴 ) = ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ‘ suc 𝐴 ) ) |
6 |
1
|
fveq1i |
⊢ ( 𝑄 ‘ suc 𝐴 ) = ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ‘ suc 𝐴 ) |
7 |
5 6
|
eqtr4di |
⊢ ( 𝐴 ∈ ω → ( ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ↾ ω ) ‘ suc 𝐴 ) = ( 𝑄 ‘ suc 𝐴 ) ) |
8 |
|
fvres |
⊢ ( 𝐴 ∈ ω → ( ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ↾ ω ) ‘ 𝐴 ) = ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ‘ 𝐴 ) ) |
9 |
1
|
fveq1i |
⊢ ( 𝑄 ‘ 𝐴 ) = ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ‘ 𝐴 ) |
10 |
8 9
|
eqtr4di |
⊢ ( 𝐴 ∈ ω → ( ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ↾ ω ) ‘ 𝐴 ) = ( 𝑄 ‘ 𝐴 ) ) |
11 |
10
|
fveq2d |
⊢ ( 𝐴 ∈ ω → ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ↾ ω ) ‘ 𝐴 ) ) = ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( 𝑄 ‘ 𝐴 ) ) ) |
12 |
4 7 11
|
3eqtr3d |
⊢ ( 𝐴 ∈ ω → ( 𝑄 ‘ suc 𝐴 ) = ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( 𝑄 ‘ 𝐴 ) ) ) |
13 |
1
|
seqomlem1 |
⊢ ( 𝐴 ∈ ω → ( 𝑄 ‘ 𝐴 ) = 〈 𝐴 , ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) 〉 ) |
14 |
13
|
fveq2d |
⊢ ( 𝐴 ∈ ω → ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( 𝑄 ‘ 𝐴 ) ) = ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ 〈 𝐴 , ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) 〉 ) ) |
15 |
|
df-ov |
⊢ ( 𝐴 ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) ) = ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ 〈 𝐴 , ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) 〉 ) |
16 |
|
fvex |
⊢ ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) ∈ V |
17 |
|
suceq |
⊢ ( 𝑖 = 𝐴 → suc 𝑖 = suc 𝐴 ) |
18 |
|
oveq1 |
⊢ ( 𝑖 = 𝐴 → ( 𝑖 𝐹 𝑣 ) = ( 𝐴 𝐹 𝑣 ) ) |
19 |
17 18
|
opeq12d |
⊢ ( 𝑖 = 𝐴 → 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 = 〈 suc 𝐴 , ( 𝐴 𝐹 𝑣 ) 〉 ) |
20 |
|
oveq2 |
⊢ ( 𝑣 = ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) → ( 𝐴 𝐹 𝑣 ) = ( 𝐴 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) ) ) |
21 |
20
|
opeq2d |
⊢ ( 𝑣 = ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) → 〈 suc 𝐴 , ( 𝐴 𝐹 𝑣 ) 〉 = 〈 suc 𝐴 , ( 𝐴 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) ) 〉 ) |
22 |
|
eqid |
⊢ ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) = ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) |
23 |
|
opex |
⊢ 〈 suc 𝐴 , ( 𝐴 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) ) 〉 ∈ V |
24 |
19 21 22 23
|
ovmpo |
⊢ ( ( 𝐴 ∈ ω ∧ ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) ∈ V ) → ( 𝐴 ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) ) = 〈 suc 𝐴 , ( 𝐴 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) ) 〉 ) |
25 |
16 24
|
mpan2 |
⊢ ( 𝐴 ∈ ω → ( 𝐴 ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) ) = 〈 suc 𝐴 , ( 𝐴 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) ) 〉 ) |
26 |
|
fvres |
⊢ ( 𝐴 ∈ ω → ( ( 𝑄 ↾ ω ) ‘ 𝐴 ) = ( 𝑄 ‘ 𝐴 ) ) |
27 |
26 13
|
eqtrd |
⊢ ( 𝐴 ∈ ω → ( ( 𝑄 ↾ ω ) ‘ 𝐴 ) = 〈 𝐴 , ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) 〉 ) |
28 |
|
frfnom |
⊢ ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ↾ ω ) Fn ω |
29 |
1
|
reseq1i |
⊢ ( 𝑄 ↾ ω ) = ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ↾ ω ) |
30 |
29
|
fneq1i |
⊢ ( ( 𝑄 ↾ ω ) Fn ω ↔ ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ↾ ω ) Fn ω ) |
31 |
28 30
|
mpbir |
⊢ ( 𝑄 ↾ ω ) Fn ω |
32 |
|
fnfvelrn |
⊢ ( ( ( 𝑄 ↾ ω ) Fn ω ∧ 𝐴 ∈ ω ) → ( ( 𝑄 ↾ ω ) ‘ 𝐴 ) ∈ ran ( 𝑄 ↾ ω ) ) |
33 |
31 32
|
mpan |
⊢ ( 𝐴 ∈ ω → ( ( 𝑄 ↾ ω ) ‘ 𝐴 ) ∈ ran ( 𝑄 ↾ ω ) ) |
34 |
27 33
|
eqeltrrd |
⊢ ( 𝐴 ∈ ω → 〈 𝐴 , ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) 〉 ∈ ran ( 𝑄 ↾ ω ) ) |
35 |
|
df-ima |
⊢ ( 𝑄 “ ω ) = ran ( 𝑄 ↾ ω ) |
36 |
34 35
|
eleqtrrdi |
⊢ ( 𝐴 ∈ ω → 〈 𝐴 , ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) 〉 ∈ ( 𝑄 “ ω ) ) |
37 |
|
df-br |
⊢ ( 𝐴 ( 𝑄 “ ω ) ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) ↔ 〈 𝐴 , ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) 〉 ∈ ( 𝑄 “ ω ) ) |
38 |
36 37
|
sylibr |
⊢ ( 𝐴 ∈ ω → 𝐴 ( 𝑄 “ ω ) ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) ) |
39 |
1
|
seqomlem2 |
⊢ ( 𝑄 “ ω ) Fn ω |
40 |
|
fnbrfvb |
⊢ ( ( ( 𝑄 “ ω ) Fn ω ∧ 𝐴 ∈ ω ) → ( ( ( 𝑄 “ ω ) ‘ 𝐴 ) = ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) ↔ 𝐴 ( 𝑄 “ ω ) ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) ) ) |
41 |
39 40
|
mpan |
⊢ ( 𝐴 ∈ ω → ( ( ( 𝑄 “ ω ) ‘ 𝐴 ) = ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) ↔ 𝐴 ( 𝑄 “ ω ) ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) ) ) |
42 |
38 41
|
mpbird |
⊢ ( 𝐴 ∈ ω → ( ( 𝑄 “ ω ) ‘ 𝐴 ) = ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) ) |
43 |
42
|
eqcomd |
⊢ ( 𝐴 ∈ ω → ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) = ( ( 𝑄 “ ω ) ‘ 𝐴 ) ) |
44 |
43
|
oveq2d |
⊢ ( 𝐴 ∈ ω → ( 𝐴 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) ) = ( 𝐴 𝐹 ( ( 𝑄 “ ω ) ‘ 𝐴 ) ) ) |
45 |
44
|
opeq2d |
⊢ ( 𝐴 ∈ ω → 〈 suc 𝐴 , ( 𝐴 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) ) 〉 = 〈 suc 𝐴 , ( 𝐴 𝐹 ( ( 𝑄 “ ω ) ‘ 𝐴 ) ) 〉 ) |
46 |
25 45
|
eqtrd |
⊢ ( 𝐴 ∈ ω → ( 𝐴 ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) ) = 〈 suc 𝐴 , ( 𝐴 𝐹 ( ( 𝑄 “ ω ) ‘ 𝐴 ) ) 〉 ) |
47 |
15 46
|
eqtr3id |
⊢ ( 𝐴 ∈ ω → ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ 〈 𝐴 , ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) 〉 ) = 〈 suc 𝐴 , ( 𝐴 𝐹 ( ( 𝑄 “ ω ) ‘ 𝐴 ) ) 〉 ) |
48 |
12 14 47
|
3eqtrd |
⊢ ( 𝐴 ∈ ω → ( 𝑄 ‘ suc 𝐴 ) = 〈 suc 𝐴 , ( 𝐴 𝐹 ( ( 𝑄 “ ω ) ‘ 𝐴 ) ) 〉 ) |
49 |
3 48
|
eqtrd |
⊢ ( 𝐴 ∈ ω → ( ( 𝑄 ↾ ω ) ‘ suc 𝐴 ) = 〈 suc 𝐴 , ( 𝐴 𝐹 ( ( 𝑄 “ ω ) ‘ 𝐴 ) ) 〉 ) |
50 |
|
fnfvelrn |
⊢ ( ( ( 𝑄 ↾ ω ) Fn ω ∧ suc 𝐴 ∈ ω ) → ( ( 𝑄 ↾ ω ) ‘ suc 𝐴 ) ∈ ran ( 𝑄 ↾ ω ) ) |
51 |
31 2 50
|
sylancr |
⊢ ( 𝐴 ∈ ω → ( ( 𝑄 ↾ ω ) ‘ suc 𝐴 ) ∈ ran ( 𝑄 ↾ ω ) ) |
52 |
49 51
|
eqeltrrd |
⊢ ( 𝐴 ∈ ω → 〈 suc 𝐴 , ( 𝐴 𝐹 ( ( 𝑄 “ ω ) ‘ 𝐴 ) ) 〉 ∈ ran ( 𝑄 ↾ ω ) ) |
53 |
52 35
|
eleqtrrdi |
⊢ ( 𝐴 ∈ ω → 〈 suc 𝐴 , ( 𝐴 𝐹 ( ( 𝑄 “ ω ) ‘ 𝐴 ) ) 〉 ∈ ( 𝑄 “ ω ) ) |
54 |
|
df-br |
⊢ ( suc 𝐴 ( 𝑄 “ ω ) ( 𝐴 𝐹 ( ( 𝑄 “ ω ) ‘ 𝐴 ) ) ↔ 〈 suc 𝐴 , ( 𝐴 𝐹 ( ( 𝑄 “ ω ) ‘ 𝐴 ) ) 〉 ∈ ( 𝑄 “ ω ) ) |
55 |
53 54
|
sylibr |
⊢ ( 𝐴 ∈ ω → suc 𝐴 ( 𝑄 “ ω ) ( 𝐴 𝐹 ( ( 𝑄 “ ω ) ‘ 𝐴 ) ) ) |
56 |
|
fnbrfvb |
⊢ ( ( ( 𝑄 “ ω ) Fn ω ∧ suc 𝐴 ∈ ω ) → ( ( ( 𝑄 “ ω ) ‘ suc 𝐴 ) = ( 𝐴 𝐹 ( ( 𝑄 “ ω ) ‘ 𝐴 ) ) ↔ suc 𝐴 ( 𝑄 “ ω ) ( 𝐴 𝐹 ( ( 𝑄 “ ω ) ‘ 𝐴 ) ) ) ) |
57 |
39 2 56
|
sylancr |
⊢ ( 𝐴 ∈ ω → ( ( ( 𝑄 “ ω ) ‘ suc 𝐴 ) = ( 𝐴 𝐹 ( ( 𝑄 “ ω ) ‘ 𝐴 ) ) ↔ suc 𝐴 ( 𝑄 “ ω ) ( 𝐴 𝐹 ( ( 𝑄 “ ω ) ‘ 𝐴 ) ) ) ) |
58 |
55 57
|
mpbird |
⊢ ( 𝐴 ∈ ω → ( ( 𝑄 “ ω ) ‘ suc 𝐴 ) = ( 𝐴 𝐹 ( ( 𝑄 “ ω ) ‘ 𝐴 ) ) ) |