Step |
Hyp |
Ref |
Expression |
1 |
|
seqom.a |
⊢ 𝐺 = seqω ( 𝐹 , 𝐼 ) |
2 |
|
seqomlem0 |
⊢ rec ( ( 𝑎 ∈ ω , 𝑏 ∈ V ↦ 〈 suc 𝑎 , ( 𝑎 𝐹 𝑏 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) = rec ( ( 𝑐 ∈ ω , 𝑑 ∈ V ↦ 〈 suc 𝑐 , ( 𝑐 𝐹 𝑑 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) |
3 |
2
|
seqomlem4 |
⊢ ( 𝐴 ∈ ω → ( ( rec ( ( 𝑎 ∈ ω , 𝑏 ∈ V ↦ 〈 suc 𝑎 , ( 𝑎 𝐹 𝑏 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) “ ω ) ‘ suc 𝐴 ) = ( 𝐴 𝐹 ( ( rec ( ( 𝑎 ∈ ω , 𝑏 ∈ V ↦ 〈 suc 𝑎 , ( 𝑎 𝐹 𝑏 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) “ ω ) ‘ 𝐴 ) ) ) |
4 |
|
df-seqom |
⊢ seqω ( 𝐹 , 𝐼 ) = ( rec ( ( 𝑎 ∈ ω , 𝑏 ∈ V ↦ 〈 suc 𝑎 , ( 𝑎 𝐹 𝑏 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) “ ω ) |
5 |
1 4
|
eqtri |
⊢ 𝐺 = ( rec ( ( 𝑎 ∈ ω , 𝑏 ∈ V ↦ 〈 suc 𝑎 , ( 𝑎 𝐹 𝑏 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) “ ω ) |
6 |
5
|
fveq1i |
⊢ ( 𝐺 ‘ suc 𝐴 ) = ( ( rec ( ( 𝑎 ∈ ω , 𝑏 ∈ V ↦ 〈 suc 𝑎 , ( 𝑎 𝐹 𝑏 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) “ ω ) ‘ suc 𝐴 ) |
7 |
5
|
fveq1i |
⊢ ( 𝐺 ‘ 𝐴 ) = ( ( rec ( ( 𝑎 ∈ ω , 𝑏 ∈ V ↦ 〈 suc 𝑎 , ( 𝑎 𝐹 𝑏 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) “ ω ) ‘ 𝐴 ) |
8 |
7
|
oveq2i |
⊢ ( 𝐴 𝐹 ( 𝐺 ‘ 𝐴 ) ) = ( 𝐴 𝐹 ( ( rec ( ( 𝑎 ∈ ω , 𝑏 ∈ V ↦ 〈 suc 𝑎 , ( 𝑎 𝐹 𝑏 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) “ ω ) ‘ 𝐴 ) ) |
9 |
3 6 8
|
3eqtr4g |
⊢ ( 𝐴 ∈ ω → ( 𝐺 ‘ suc 𝐴 ) = ( 𝐴 𝐹 ( 𝐺 ‘ 𝐴 ) ) ) |