| Step |
Hyp |
Ref |
Expression |
| 1 |
|
seqshft2.1 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 2 |
|
seqshft2.2 |
⊢ ( 𝜑 → 𝐾 ∈ ℤ ) |
| 3 |
|
seqshft2.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝑘 + 𝐾 ) ) ) |
| 4 |
|
eluzfz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) |
| 5 |
1 4
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) |
| 6 |
|
eleq1 |
⊢ ( 𝑥 = 𝑀 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↔ 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) ) |
| 7 |
|
fveq2 |
⊢ ( 𝑥 = 𝑀 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) ) |
| 8 |
|
fvoveq1 |
⊢ ( 𝑥 = 𝑀 → ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑥 + 𝐾 ) ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑀 + 𝐾 ) ) ) |
| 9 |
7 8
|
eqeq12d |
⊢ ( 𝑥 = 𝑀 → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑥 + 𝐾 ) ) ↔ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑀 + 𝐾 ) ) ) ) |
| 10 |
6 9
|
imbi12d |
⊢ ( 𝑥 = 𝑀 → ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑥 + 𝐾 ) ) ) ↔ ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑀 + 𝐾 ) ) ) ) ) |
| 11 |
10
|
imbi2d |
⊢ ( 𝑥 = 𝑀 → ( ( 𝜑 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑥 + 𝐾 ) ) ) ) ↔ ( 𝜑 → ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑀 + 𝐾 ) ) ) ) ) ) |
| 12 |
|
eleq1 |
⊢ ( 𝑥 = 𝑛 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↔ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) ) |
| 13 |
|
fveq2 |
⊢ ( 𝑥 = 𝑛 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) |
| 14 |
|
fvoveq1 |
⊢ ( 𝑥 = 𝑛 → ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑥 + 𝐾 ) ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑛 + 𝐾 ) ) ) |
| 15 |
13 14
|
eqeq12d |
⊢ ( 𝑥 = 𝑛 → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑥 + 𝐾 ) ) ↔ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑛 + 𝐾 ) ) ) ) |
| 16 |
12 15
|
imbi12d |
⊢ ( 𝑥 = 𝑛 → ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑥 + 𝐾 ) ) ) ↔ ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑛 + 𝐾 ) ) ) ) ) |
| 17 |
16
|
imbi2d |
⊢ ( 𝑥 = 𝑛 → ( ( 𝜑 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑥 + 𝐾 ) ) ) ) ↔ ( 𝜑 → ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑛 + 𝐾 ) ) ) ) ) ) |
| 18 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) |
| 19 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) |
| 20 |
|
fvoveq1 |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑥 + 𝐾 ) ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( ( 𝑛 + 1 ) + 𝐾 ) ) ) |
| 21 |
19 20
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑥 + 𝐾 ) ) ↔ ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( ( 𝑛 + 1 ) + 𝐾 ) ) ) ) |
| 22 |
18 21
|
imbi12d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑥 + 𝐾 ) ) ) ↔ ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( ( 𝑛 + 1 ) + 𝐾 ) ) ) ) ) |
| 23 |
22
|
imbi2d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝜑 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑥 + 𝐾 ) ) ) ) ↔ ( 𝜑 → ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( ( 𝑛 + 1 ) + 𝐾 ) ) ) ) ) ) |
| 24 |
|
eleq1 |
⊢ ( 𝑥 = 𝑁 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↔ 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) ) |
| 25 |
|
fveq2 |
⊢ ( 𝑥 = 𝑁 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) |
| 26 |
|
fvoveq1 |
⊢ ( 𝑥 = 𝑁 → ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑥 + 𝐾 ) ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑁 + 𝐾 ) ) ) |
| 27 |
25 26
|
eqeq12d |
⊢ ( 𝑥 = 𝑁 → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑥 + 𝐾 ) ) ↔ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑁 + 𝐾 ) ) ) ) |
| 28 |
24 27
|
imbi12d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑥 + 𝐾 ) ) ) ↔ ( 𝑁 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑁 + 𝐾 ) ) ) ) ) |
| 29 |
28
|
imbi2d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝜑 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑥 + 𝐾 ) ) ) ) ↔ ( 𝜑 → ( 𝑁 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑁 + 𝐾 ) ) ) ) ) ) |
| 30 |
|
fveq2 |
⊢ ( 𝑘 = 𝑀 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑀 ) ) |
| 31 |
|
fvoveq1 |
⊢ ( 𝑘 = 𝑀 → ( 𝐺 ‘ ( 𝑘 + 𝐾 ) ) = ( 𝐺 ‘ ( 𝑀 + 𝐾 ) ) ) |
| 32 |
30 31
|
eqeq12d |
⊢ ( 𝑘 = 𝑀 → ( ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝑘 + 𝐾 ) ) ↔ ( 𝐹 ‘ 𝑀 ) = ( 𝐺 ‘ ( 𝑀 + 𝐾 ) ) ) ) |
| 33 |
3
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝑘 + 𝐾 ) ) ) |
| 34 |
|
eluzfz1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) |
| 35 |
1 34
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) |
| 36 |
32 33 35
|
rspcdva |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) = ( 𝐺 ‘ ( 𝑀 + 𝐾 ) ) ) |
| 37 |
|
eluzel2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) |
| 38 |
1 37
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 39 |
|
seq1 |
⊢ ( 𝑀 ∈ ℤ → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( 𝐹 ‘ 𝑀 ) ) |
| 40 |
38 39
|
syl |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( 𝐹 ‘ 𝑀 ) ) |
| 41 |
38 2
|
zaddcld |
⊢ ( 𝜑 → ( 𝑀 + 𝐾 ) ∈ ℤ ) |
| 42 |
|
seq1 |
⊢ ( ( 𝑀 + 𝐾 ) ∈ ℤ → ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑀 + 𝐾 ) ) = ( 𝐺 ‘ ( 𝑀 + 𝐾 ) ) ) |
| 43 |
41 42
|
syl |
⊢ ( 𝜑 → ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑀 + 𝐾 ) ) = ( 𝐺 ‘ ( 𝑀 + 𝐾 ) ) ) |
| 44 |
36 40 43
|
3eqtr4d |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑀 + 𝐾 ) ) ) |
| 45 |
44
|
a1i13 |
⊢ ( 𝑀 ∈ ℤ → ( 𝜑 → ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑀 + 𝐾 ) ) ) ) ) |
| 46 |
|
peano2fzr |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) |
| 47 |
46
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) |
| 48 |
47
|
expr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) ) |
| 49 |
48
|
imim1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑛 + 𝐾 ) ) ) → ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑛 + 𝐾 ) ) ) ) ) |
| 50 |
|
oveq1 |
⊢ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑛 + 𝐾 ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = ( ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑛 + 𝐾 ) ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 51 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 52 |
|
seqp1 |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 53 |
51 52
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 54 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → 𝐾 ∈ ℤ ) |
| 55 |
|
eluzadd |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐾 ∈ ℤ ) → ( 𝑛 + 𝐾 ) ∈ ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) ) |
| 56 |
51 54 55
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( 𝑛 + 𝐾 ) ∈ ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) ) |
| 57 |
|
seqp1 |
⊢ ( ( 𝑛 + 𝐾 ) ∈ ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) → ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( ( 𝑛 + 𝐾 ) + 1 ) ) = ( ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑛 + 𝐾 ) ) + ( 𝐺 ‘ ( ( 𝑛 + 𝐾 ) + 1 ) ) ) ) |
| 58 |
56 57
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( ( 𝑛 + 𝐾 ) + 1 ) ) = ( ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑛 + 𝐾 ) ) + ( 𝐺 ‘ ( ( 𝑛 + 𝐾 ) + 1 ) ) ) ) |
| 59 |
|
eluzelz |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑛 ∈ ℤ ) |
| 60 |
51 59
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → 𝑛 ∈ ℤ ) |
| 61 |
|
zcn |
⊢ ( 𝑛 ∈ ℤ → 𝑛 ∈ ℂ ) |
| 62 |
|
zcn |
⊢ ( 𝐾 ∈ ℤ → 𝐾 ∈ ℂ ) |
| 63 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 64 |
|
add32 |
⊢ ( ( 𝑛 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐾 ∈ ℂ ) → ( ( 𝑛 + 1 ) + 𝐾 ) = ( ( 𝑛 + 𝐾 ) + 1 ) ) |
| 65 |
63 64
|
mp3an2 |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝐾 ∈ ℂ ) → ( ( 𝑛 + 1 ) + 𝐾 ) = ( ( 𝑛 + 𝐾 ) + 1 ) ) |
| 66 |
61 62 65
|
syl2an |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝐾 ∈ ℤ ) → ( ( 𝑛 + 1 ) + 𝐾 ) = ( ( 𝑛 + 𝐾 ) + 1 ) ) |
| 67 |
60 54 66
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( ( 𝑛 + 1 ) + 𝐾 ) = ( ( 𝑛 + 𝐾 ) + 1 ) ) |
| 68 |
67
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( ( 𝑛 + 1 ) + 𝐾 ) ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( ( 𝑛 + 𝐾 ) + 1 ) ) ) |
| 69 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
| 70 |
|
fvoveq1 |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( 𝐺 ‘ ( 𝑘 + 𝐾 ) ) = ( 𝐺 ‘ ( ( 𝑛 + 1 ) + 𝐾 ) ) ) |
| 71 |
69 70
|
eqeq12d |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝑘 + 𝐾 ) ) ↔ ( 𝐹 ‘ ( 𝑛 + 1 ) ) = ( 𝐺 ‘ ( ( 𝑛 + 1 ) + 𝐾 ) ) ) ) |
| 72 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝑘 + 𝐾 ) ) ) |
| 73 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) |
| 74 |
71 72 73
|
rspcdva |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) = ( 𝐺 ‘ ( ( 𝑛 + 1 ) + 𝐾 ) ) ) |
| 75 |
67
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( 𝐺 ‘ ( ( 𝑛 + 1 ) + 𝐾 ) ) = ( 𝐺 ‘ ( ( 𝑛 + 𝐾 ) + 1 ) ) ) |
| 76 |
74 75
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) = ( 𝐺 ‘ ( ( 𝑛 + 𝐾 ) + 1 ) ) ) |
| 77 |
76
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑛 + 𝐾 ) ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = ( ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑛 + 𝐾 ) ) + ( 𝐺 ‘ ( ( 𝑛 + 𝐾 ) + 1 ) ) ) ) |
| 78 |
58 68 77
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( ( 𝑛 + 1 ) + 𝐾 ) ) = ( ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑛 + 𝐾 ) ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 79 |
53 78
|
eqeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( ( 𝑛 + 1 ) + 𝐾 ) ) ↔ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = ( ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑛 + 𝐾 ) ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 80 |
50 79
|
imbitrrid |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑛 + 𝐾 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( ( 𝑛 + 1 ) + 𝐾 ) ) ) ) |
| 81 |
49 80
|
animpimp2impd |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝜑 → ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑛 + 𝐾 ) ) ) ) → ( 𝜑 → ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( ( 𝑛 + 1 ) + 𝐾 ) ) ) ) ) ) |
| 82 |
11 17 23 29 45 81
|
uzind4 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝜑 → ( 𝑁 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑁 + 𝐾 ) ) ) ) ) |
| 83 |
1 82
|
mpcom |
⊢ ( 𝜑 → ( 𝑁 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑁 + 𝐾 ) ) ) ) |
| 84 |
5 83
|
mpd |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑁 + 𝐾 ) ) ) |