Step |
Hyp |
Ref |
Expression |
1 |
|
seqshft2.1 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
2 |
|
seqshft2.2 |
⊢ ( 𝜑 → 𝐾 ∈ ℤ ) |
3 |
|
seqshft2.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝑘 + 𝐾 ) ) ) |
4 |
|
eluzfz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) |
5 |
1 4
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) |
6 |
|
eleq1 |
⊢ ( 𝑥 = 𝑀 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↔ 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) ) |
7 |
|
fveq2 |
⊢ ( 𝑥 = 𝑀 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) ) |
8 |
|
fvoveq1 |
⊢ ( 𝑥 = 𝑀 → ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑥 + 𝐾 ) ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑀 + 𝐾 ) ) ) |
9 |
7 8
|
eqeq12d |
⊢ ( 𝑥 = 𝑀 → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑥 + 𝐾 ) ) ↔ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑀 + 𝐾 ) ) ) ) |
10 |
6 9
|
imbi12d |
⊢ ( 𝑥 = 𝑀 → ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑥 + 𝐾 ) ) ) ↔ ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑀 + 𝐾 ) ) ) ) ) |
11 |
10
|
imbi2d |
⊢ ( 𝑥 = 𝑀 → ( ( 𝜑 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑥 + 𝐾 ) ) ) ) ↔ ( 𝜑 → ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑀 + 𝐾 ) ) ) ) ) ) |
12 |
|
eleq1 |
⊢ ( 𝑥 = 𝑛 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↔ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) ) |
13 |
|
fveq2 |
⊢ ( 𝑥 = 𝑛 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) |
14 |
|
fvoveq1 |
⊢ ( 𝑥 = 𝑛 → ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑥 + 𝐾 ) ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑛 + 𝐾 ) ) ) |
15 |
13 14
|
eqeq12d |
⊢ ( 𝑥 = 𝑛 → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑥 + 𝐾 ) ) ↔ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑛 + 𝐾 ) ) ) ) |
16 |
12 15
|
imbi12d |
⊢ ( 𝑥 = 𝑛 → ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑥 + 𝐾 ) ) ) ↔ ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑛 + 𝐾 ) ) ) ) ) |
17 |
16
|
imbi2d |
⊢ ( 𝑥 = 𝑛 → ( ( 𝜑 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑥 + 𝐾 ) ) ) ) ↔ ( 𝜑 → ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑛 + 𝐾 ) ) ) ) ) ) |
18 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) |
19 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) |
20 |
|
fvoveq1 |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑥 + 𝐾 ) ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( ( 𝑛 + 1 ) + 𝐾 ) ) ) |
21 |
19 20
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑥 + 𝐾 ) ) ↔ ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( ( 𝑛 + 1 ) + 𝐾 ) ) ) ) |
22 |
18 21
|
imbi12d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑥 + 𝐾 ) ) ) ↔ ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( ( 𝑛 + 1 ) + 𝐾 ) ) ) ) ) |
23 |
22
|
imbi2d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝜑 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑥 + 𝐾 ) ) ) ) ↔ ( 𝜑 → ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( ( 𝑛 + 1 ) + 𝐾 ) ) ) ) ) ) |
24 |
|
eleq1 |
⊢ ( 𝑥 = 𝑁 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↔ 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) ) |
25 |
|
fveq2 |
⊢ ( 𝑥 = 𝑁 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) |
26 |
|
fvoveq1 |
⊢ ( 𝑥 = 𝑁 → ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑥 + 𝐾 ) ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑁 + 𝐾 ) ) ) |
27 |
25 26
|
eqeq12d |
⊢ ( 𝑥 = 𝑁 → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑥 + 𝐾 ) ) ↔ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑁 + 𝐾 ) ) ) ) |
28 |
24 27
|
imbi12d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑥 + 𝐾 ) ) ) ↔ ( 𝑁 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑁 + 𝐾 ) ) ) ) ) |
29 |
28
|
imbi2d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝜑 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑥 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑥 + 𝐾 ) ) ) ) ↔ ( 𝜑 → ( 𝑁 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑁 + 𝐾 ) ) ) ) ) ) |
30 |
|
fveq2 |
⊢ ( 𝑘 = 𝑀 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑀 ) ) |
31 |
|
fvoveq1 |
⊢ ( 𝑘 = 𝑀 → ( 𝐺 ‘ ( 𝑘 + 𝐾 ) ) = ( 𝐺 ‘ ( 𝑀 + 𝐾 ) ) ) |
32 |
30 31
|
eqeq12d |
⊢ ( 𝑘 = 𝑀 → ( ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝑘 + 𝐾 ) ) ↔ ( 𝐹 ‘ 𝑀 ) = ( 𝐺 ‘ ( 𝑀 + 𝐾 ) ) ) ) |
33 |
3
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝑘 + 𝐾 ) ) ) |
34 |
|
eluzfz1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) |
35 |
1 34
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) |
36 |
32 33 35
|
rspcdva |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) = ( 𝐺 ‘ ( 𝑀 + 𝐾 ) ) ) |
37 |
|
eluzel2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) |
38 |
1 37
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
39 |
|
seq1 |
⊢ ( 𝑀 ∈ ℤ → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( 𝐹 ‘ 𝑀 ) ) |
40 |
38 39
|
syl |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( 𝐹 ‘ 𝑀 ) ) |
41 |
38 2
|
zaddcld |
⊢ ( 𝜑 → ( 𝑀 + 𝐾 ) ∈ ℤ ) |
42 |
|
seq1 |
⊢ ( ( 𝑀 + 𝐾 ) ∈ ℤ → ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑀 + 𝐾 ) ) = ( 𝐺 ‘ ( 𝑀 + 𝐾 ) ) ) |
43 |
41 42
|
syl |
⊢ ( 𝜑 → ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑀 + 𝐾 ) ) = ( 𝐺 ‘ ( 𝑀 + 𝐾 ) ) ) |
44 |
36 40 43
|
3eqtr4d |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑀 + 𝐾 ) ) ) |
45 |
44
|
a1i13 |
⊢ ( 𝑀 ∈ ℤ → ( 𝜑 → ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑀 + 𝐾 ) ) ) ) ) |
46 |
|
peano2fzr |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) |
47 |
46
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) |
48 |
47
|
expr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) ) |
49 |
48
|
imim1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑛 + 𝐾 ) ) ) → ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑛 + 𝐾 ) ) ) ) ) |
50 |
|
oveq1 |
⊢ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑛 + 𝐾 ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = ( ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑛 + 𝐾 ) ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
51 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
52 |
|
seqp1 |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
53 |
51 52
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
54 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → 𝐾 ∈ ℤ ) |
55 |
|
eluzadd |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐾 ∈ ℤ ) → ( 𝑛 + 𝐾 ) ∈ ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) ) |
56 |
51 54 55
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( 𝑛 + 𝐾 ) ∈ ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) ) |
57 |
|
seqp1 |
⊢ ( ( 𝑛 + 𝐾 ) ∈ ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) → ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( ( 𝑛 + 𝐾 ) + 1 ) ) = ( ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑛 + 𝐾 ) ) + ( 𝐺 ‘ ( ( 𝑛 + 𝐾 ) + 1 ) ) ) ) |
58 |
56 57
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( ( 𝑛 + 𝐾 ) + 1 ) ) = ( ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑛 + 𝐾 ) ) + ( 𝐺 ‘ ( ( 𝑛 + 𝐾 ) + 1 ) ) ) ) |
59 |
|
eluzelz |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑛 ∈ ℤ ) |
60 |
51 59
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → 𝑛 ∈ ℤ ) |
61 |
|
zcn |
⊢ ( 𝑛 ∈ ℤ → 𝑛 ∈ ℂ ) |
62 |
|
zcn |
⊢ ( 𝐾 ∈ ℤ → 𝐾 ∈ ℂ ) |
63 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
64 |
|
add32 |
⊢ ( ( 𝑛 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐾 ∈ ℂ ) → ( ( 𝑛 + 1 ) + 𝐾 ) = ( ( 𝑛 + 𝐾 ) + 1 ) ) |
65 |
63 64
|
mp3an2 |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝐾 ∈ ℂ ) → ( ( 𝑛 + 1 ) + 𝐾 ) = ( ( 𝑛 + 𝐾 ) + 1 ) ) |
66 |
61 62 65
|
syl2an |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝐾 ∈ ℤ ) → ( ( 𝑛 + 1 ) + 𝐾 ) = ( ( 𝑛 + 𝐾 ) + 1 ) ) |
67 |
60 54 66
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( ( 𝑛 + 1 ) + 𝐾 ) = ( ( 𝑛 + 𝐾 ) + 1 ) ) |
68 |
67
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( ( 𝑛 + 1 ) + 𝐾 ) ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( ( 𝑛 + 𝐾 ) + 1 ) ) ) |
69 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
70 |
|
fvoveq1 |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( 𝐺 ‘ ( 𝑘 + 𝐾 ) ) = ( 𝐺 ‘ ( ( 𝑛 + 1 ) + 𝐾 ) ) ) |
71 |
69 70
|
eqeq12d |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝑘 + 𝐾 ) ) ↔ ( 𝐹 ‘ ( 𝑛 + 1 ) ) = ( 𝐺 ‘ ( ( 𝑛 + 1 ) + 𝐾 ) ) ) ) |
72 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝑘 + 𝐾 ) ) ) |
73 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) |
74 |
71 72 73
|
rspcdva |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) = ( 𝐺 ‘ ( ( 𝑛 + 1 ) + 𝐾 ) ) ) |
75 |
67
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( 𝐺 ‘ ( ( 𝑛 + 1 ) + 𝐾 ) ) = ( 𝐺 ‘ ( ( 𝑛 + 𝐾 ) + 1 ) ) ) |
76 |
74 75
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) = ( 𝐺 ‘ ( ( 𝑛 + 𝐾 ) + 1 ) ) ) |
77 |
76
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑛 + 𝐾 ) ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = ( ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑛 + 𝐾 ) ) + ( 𝐺 ‘ ( ( 𝑛 + 𝐾 ) + 1 ) ) ) ) |
78 |
58 68 77
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( ( 𝑛 + 1 ) + 𝐾 ) ) = ( ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑛 + 𝐾 ) ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
79 |
53 78
|
eqeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( ( 𝑛 + 1 ) + 𝐾 ) ) ↔ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = ( ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑛 + 𝐾 ) ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) |
80 |
50 79
|
syl5ibr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑛 + 𝐾 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( ( 𝑛 + 1 ) + 𝐾 ) ) ) ) |
81 |
49 80
|
animpimp2impd |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝜑 → ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑛 + 𝐾 ) ) ) ) → ( 𝜑 → ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( ( 𝑛 + 1 ) + 𝐾 ) ) ) ) ) ) |
82 |
11 17 23 29 45 81
|
uzind4 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝜑 → ( 𝑁 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑁 + 𝐾 ) ) ) ) ) |
83 |
1 82
|
mpcom |
⊢ ( 𝜑 → ( 𝑁 ∈ ( 𝑀 ... 𝑁 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑁 + 𝐾 ) ) ) ) |
84 |
5 83
|
mpd |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( seq ( 𝑀 + 𝐾 ) ( + , 𝐺 ) ‘ ( 𝑁 + 𝐾 ) ) ) |