| Step | Hyp | Ref | Expression | 
						
							| 1 |  | seqsplit.1 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑥  +  𝑦 )  ∈  𝑆 ) | 
						
							| 2 |  | seqsplit.2 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  ( ( 𝑥  +  𝑦 )  +  𝑧 )  =  ( 𝑥  +  ( 𝑦  +  𝑧 ) ) ) | 
						
							| 3 |  | seqsplit.3 | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) ) | 
						
							| 4 |  | seqsplit.4 | ⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ 𝐾 ) ) | 
						
							| 5 |  | seqsplit.5 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐾 ... 𝑁 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  𝑆 ) | 
						
							| 6 |  | eluzfz2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  →  𝑁  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) | 
						
							| 7 | 3 6 | syl | ⊢ ( 𝜑  →  𝑁  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) | 
						
							| 8 |  | eleq1 | ⊢ ( 𝑥  =  ( 𝑀  +  1 )  →  ( 𝑥  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  ↔  ( 𝑀  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝑥  =  ( 𝑀  +  1 )  →  ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑥 )  =  ( seq 𝐾 (  +  ,  𝐹 ) ‘ ( 𝑀  +  1 ) ) ) | 
						
							| 10 |  | fveq2 | ⊢ ( 𝑥  =  ( 𝑀  +  1 )  →  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ 𝑥 )  =  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ ( 𝑀  +  1 ) ) ) | 
						
							| 11 | 10 | oveq2d | ⊢ ( 𝑥  =  ( 𝑀  +  1 )  →  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ 𝑥 ) )  =  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ ( 𝑀  +  1 ) ) ) ) | 
						
							| 12 | 9 11 | eqeq12d | ⊢ ( 𝑥  =  ( 𝑀  +  1 )  →  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑥 )  =  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ 𝑥 ) )  ↔  ( seq 𝐾 (  +  ,  𝐹 ) ‘ ( 𝑀  +  1 ) )  =  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ ( 𝑀  +  1 ) ) ) ) ) | 
						
							| 13 | 8 12 | imbi12d | ⊢ ( 𝑥  =  ( 𝑀  +  1 )  →  ( ( 𝑥  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  →  ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑥 )  =  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ 𝑥 ) ) )  ↔  ( ( 𝑀  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  →  ( seq 𝐾 (  +  ,  𝐹 ) ‘ ( 𝑀  +  1 ) )  =  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ ( 𝑀  +  1 ) ) ) ) ) ) | 
						
							| 14 | 13 | imbi2d | ⊢ ( 𝑥  =  ( 𝑀  +  1 )  →  ( ( 𝜑  →  ( 𝑥  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  →  ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑥 )  =  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ 𝑥 ) ) ) )  ↔  ( 𝜑  →  ( ( 𝑀  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  →  ( seq 𝐾 (  +  ,  𝐹 ) ‘ ( 𝑀  +  1 ) )  =  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ ( 𝑀  +  1 ) ) ) ) ) ) ) | 
						
							| 15 |  | eleq1 | ⊢ ( 𝑥  =  𝑛  →  ( 𝑥  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  ↔  𝑛  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) ) | 
						
							| 16 |  | fveq2 | ⊢ ( 𝑥  =  𝑛  →  ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑥 )  =  ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑛 ) ) | 
						
							| 17 |  | fveq2 | ⊢ ( 𝑥  =  𝑛  →  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ 𝑥 )  =  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ 𝑛 ) ) | 
						
							| 18 | 17 | oveq2d | ⊢ ( 𝑥  =  𝑛  →  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ 𝑥 ) )  =  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ 𝑛 ) ) ) | 
						
							| 19 | 16 18 | eqeq12d | ⊢ ( 𝑥  =  𝑛  →  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑥 )  =  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ 𝑥 ) )  ↔  ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑛 )  =  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ 𝑛 ) ) ) ) | 
						
							| 20 | 15 19 | imbi12d | ⊢ ( 𝑥  =  𝑛  →  ( ( 𝑥  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  →  ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑥 )  =  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ 𝑥 ) ) )  ↔  ( 𝑛  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  →  ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑛 )  =  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ 𝑛 ) ) ) ) ) | 
						
							| 21 | 20 | imbi2d | ⊢ ( 𝑥  =  𝑛  →  ( ( 𝜑  →  ( 𝑥  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  →  ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑥 )  =  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ 𝑥 ) ) ) )  ↔  ( 𝜑  →  ( 𝑛  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  →  ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑛 )  =  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ 𝑛 ) ) ) ) ) ) | 
						
							| 22 |  | eleq1 | ⊢ ( 𝑥  =  ( 𝑛  +  1 )  →  ( 𝑥  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  ↔  ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) ) | 
						
							| 23 |  | fveq2 | ⊢ ( 𝑥  =  ( 𝑛  +  1 )  →  ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑥 )  =  ( seq 𝐾 (  +  ,  𝐹 ) ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 24 |  | fveq2 | ⊢ ( 𝑥  =  ( 𝑛  +  1 )  →  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ 𝑥 )  =  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 25 | 24 | oveq2d | ⊢ ( 𝑥  =  ( 𝑛  +  1 )  →  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ 𝑥 ) )  =  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 26 | 23 25 | eqeq12d | ⊢ ( 𝑥  =  ( 𝑛  +  1 )  →  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑥 )  =  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ 𝑥 ) )  ↔  ( seq 𝐾 (  +  ,  𝐹 ) ‘ ( 𝑛  +  1 ) )  =  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 27 | 22 26 | imbi12d | ⊢ ( 𝑥  =  ( 𝑛  +  1 )  →  ( ( 𝑥  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  →  ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑥 )  =  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ 𝑥 ) ) )  ↔  ( ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  →  ( seq 𝐾 (  +  ,  𝐹 ) ‘ ( 𝑛  +  1 ) )  =  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ ( 𝑛  +  1 ) ) ) ) ) ) | 
						
							| 28 | 27 | imbi2d | ⊢ ( 𝑥  =  ( 𝑛  +  1 )  →  ( ( 𝜑  →  ( 𝑥  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  →  ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑥 )  =  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ 𝑥 ) ) ) )  ↔  ( 𝜑  →  ( ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  →  ( seq 𝐾 (  +  ,  𝐹 ) ‘ ( 𝑛  +  1 ) )  =  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ ( 𝑛  +  1 ) ) ) ) ) ) ) | 
						
							| 29 |  | eleq1 | ⊢ ( 𝑥  =  𝑁  →  ( 𝑥  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  ↔  𝑁  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) ) | 
						
							| 30 |  | fveq2 | ⊢ ( 𝑥  =  𝑁  →  ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑥 )  =  ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑁 ) ) | 
						
							| 31 |  | fveq2 | ⊢ ( 𝑥  =  𝑁  →  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ 𝑥 )  =  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ 𝑁 ) ) | 
						
							| 32 | 31 | oveq2d | ⊢ ( 𝑥  =  𝑁  →  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ 𝑥 ) )  =  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ 𝑁 ) ) ) | 
						
							| 33 | 30 32 | eqeq12d | ⊢ ( 𝑥  =  𝑁  →  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑥 )  =  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ 𝑥 ) )  ↔  ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑁 )  =  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ 𝑁 ) ) ) ) | 
						
							| 34 | 29 33 | imbi12d | ⊢ ( 𝑥  =  𝑁  →  ( ( 𝑥  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  →  ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑥 )  =  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ 𝑥 ) ) )  ↔  ( 𝑁  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  →  ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑁 )  =  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ 𝑁 ) ) ) ) ) | 
						
							| 35 | 34 | imbi2d | ⊢ ( 𝑥  =  𝑁  →  ( ( 𝜑  →  ( 𝑥  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  →  ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑥 )  =  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ 𝑥 ) ) ) )  ↔  ( 𝜑  →  ( 𝑁  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  →  ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑁 )  =  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ 𝑁 ) ) ) ) ) ) | 
						
							| 36 |  | seqp1 | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 𝐾 )  →  ( seq 𝐾 (  +  ,  𝐹 ) ‘ ( 𝑀  +  1 ) )  =  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( 𝐹 ‘ ( 𝑀  +  1 ) ) ) ) | 
						
							| 37 | 4 36 | syl | ⊢ ( 𝜑  →  ( seq 𝐾 (  +  ,  𝐹 ) ‘ ( 𝑀  +  1 ) )  =  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( 𝐹 ‘ ( 𝑀  +  1 ) ) ) ) | 
						
							| 38 |  | eluzel2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  →  ( 𝑀  +  1 )  ∈  ℤ ) | 
						
							| 39 |  | seq1 | ⊢ ( ( 𝑀  +  1 )  ∈  ℤ  →  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ ( 𝑀  +  1 ) )  =  ( 𝐹 ‘ ( 𝑀  +  1 ) ) ) | 
						
							| 40 | 3 38 39 | 3syl | ⊢ ( 𝜑  →  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ ( 𝑀  +  1 ) )  =  ( 𝐹 ‘ ( 𝑀  +  1 ) ) ) | 
						
							| 41 | 40 | oveq2d | ⊢ ( 𝜑  →  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ ( 𝑀  +  1 ) ) )  =  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( 𝐹 ‘ ( 𝑀  +  1 ) ) ) ) | 
						
							| 42 | 37 41 | eqtr4d | ⊢ ( 𝜑  →  ( seq 𝐾 (  +  ,  𝐹 ) ‘ ( 𝑀  +  1 ) )  =  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ ( 𝑀  +  1 ) ) ) ) | 
						
							| 43 | 42 | a1i13 | ⊢ ( ( 𝑀  +  1 )  ∈  ℤ  →  ( 𝜑  →  ( ( 𝑀  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  →  ( seq 𝐾 (  +  ,  𝐹 ) ‘ ( 𝑀  +  1 ) )  =  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ ( 𝑀  +  1 ) ) ) ) ) ) | 
						
							| 44 |  | peano2fzr | ⊢ ( ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∧  ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) )  →  𝑛  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) | 
						
							| 45 | 44 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∧  ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) )  →  𝑛  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) | 
						
							| 46 | 45 | expr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  ( ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  →  𝑛  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) ) | 
						
							| 47 | 46 | imim1d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  ( ( 𝑛  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  →  ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑛 )  =  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ 𝑛 ) ) )  →  ( ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  →  ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑛 )  =  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ 𝑛 ) ) ) ) ) | 
						
							| 48 |  | oveq1 | ⊢ ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑛 )  =  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ 𝑛 ) )  →  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑛 )  +  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  =  ( ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ 𝑛 ) )  +  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 49 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∧  ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) )  →  𝑛  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) ) | 
						
							| 50 |  | peano2uz | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 𝐾 )  →  ( 𝑀  +  1 )  ∈  ( ℤ≥ ‘ 𝐾 ) ) | 
						
							| 51 | 4 50 | syl | ⊢ ( 𝜑  →  ( 𝑀  +  1 )  ∈  ( ℤ≥ ‘ 𝐾 ) ) | 
						
							| 52 | 51 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∧  ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) )  →  ( 𝑀  +  1 )  ∈  ( ℤ≥ ‘ 𝐾 ) ) | 
						
							| 53 |  | uztrn | ⊢ ( ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∧  ( 𝑀  +  1 )  ∈  ( ℤ≥ ‘ 𝐾 ) )  →  𝑛  ∈  ( ℤ≥ ‘ 𝐾 ) ) | 
						
							| 54 | 49 52 53 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∧  ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) )  →  𝑛  ∈  ( ℤ≥ ‘ 𝐾 ) ) | 
						
							| 55 |  | seqp1 | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 𝐾 )  →  ( seq 𝐾 (  +  ,  𝐹 ) ‘ ( 𝑛  +  1 ) )  =  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑛 )  +  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 56 | 54 55 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∧  ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) )  →  ( seq 𝐾 (  +  ,  𝐹 ) ‘ ( 𝑛  +  1 ) )  =  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑛 )  +  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 57 |  | seqp1 | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  →  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ ( 𝑛  +  1 ) )  =  ( ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ 𝑛 )  +  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 58 | 49 57 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∧  ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) )  →  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ ( 𝑛  +  1 ) )  =  ( ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ 𝑛 )  +  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 59 | 58 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∧  ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) )  →  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ ( 𝑛  +  1 ) ) )  =  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ 𝑛 )  +  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 60 |  | simpl | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∧  ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) )  →  𝜑 ) | 
						
							| 61 |  | eluzelz | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 𝐾 )  →  𝑀  ∈  ℤ ) | 
						
							| 62 | 4 61 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 63 |  | peano2uzr | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  →  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 64 | 62 3 63 | syl2anc | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 65 |  | fzss2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝐾 ... 𝑀 )  ⊆  ( 𝐾 ... 𝑁 ) ) | 
						
							| 66 | 64 65 | syl | ⊢ ( 𝜑  →  ( 𝐾 ... 𝑀 )  ⊆  ( 𝐾 ... 𝑁 ) ) | 
						
							| 67 | 66 | sselda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐾 ... 𝑀 ) )  →  𝑥  ∈  ( 𝐾 ... 𝑁 ) ) | 
						
							| 68 | 67 5 | syldan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐾 ... 𝑀 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  𝑆 ) | 
						
							| 69 | 4 68 1 | seqcl | ⊢ ( 𝜑  →  ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  ∈  𝑆 ) | 
						
							| 70 | 69 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∧  ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) )  →  ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  ∈  𝑆 ) | 
						
							| 71 |  | elfzuz3 | ⊢ ( 𝑛  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  →  𝑁  ∈  ( ℤ≥ ‘ 𝑛 ) ) | 
						
							| 72 |  | fzss2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑛 )  →  ( ( 𝑀  +  1 ) ... 𝑛 )  ⊆  ( ( 𝑀  +  1 ) ... 𝑁 ) ) | 
						
							| 73 | 45 71 72 | 3syl | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∧  ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) )  →  ( ( 𝑀  +  1 ) ... 𝑛 )  ⊆  ( ( 𝑀  +  1 ) ... 𝑁 ) ) | 
						
							| 74 |  | fzss1 | ⊢ ( ( 𝑀  +  1 )  ∈  ( ℤ≥ ‘ 𝐾 )  →  ( ( 𝑀  +  1 ) ... 𝑁 )  ⊆  ( 𝐾 ... 𝑁 ) ) | 
						
							| 75 | 4 50 74 | 3syl | ⊢ ( 𝜑  →  ( ( 𝑀  +  1 ) ... 𝑁 )  ⊆  ( 𝐾 ... 𝑁 ) ) | 
						
							| 76 | 75 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∧  ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) )  →  ( ( 𝑀  +  1 ) ... 𝑁 )  ⊆  ( 𝐾 ... 𝑁 ) ) | 
						
							| 77 | 73 76 | sstrd | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∧  ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) )  →  ( ( 𝑀  +  1 ) ... 𝑛 )  ⊆  ( 𝐾 ... 𝑁 ) ) | 
						
							| 78 | 77 | sselda | ⊢ ( ( ( 𝜑  ∧  ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∧  ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) )  ∧  𝑥  ∈  ( ( 𝑀  +  1 ) ... 𝑛 ) )  →  𝑥  ∈  ( 𝐾 ... 𝑁 ) ) | 
						
							| 79 | 5 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∧  ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) )  ∧  𝑥  ∈  ( 𝐾 ... 𝑁 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  𝑆 ) | 
						
							| 80 | 78 79 | syldan | ⊢ ( ( ( 𝜑  ∧  ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∧  ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) )  ∧  𝑥  ∈  ( ( 𝑀  +  1 ) ... 𝑛 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  𝑆 ) | 
						
							| 81 | 1 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∧  ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑥  +  𝑦 )  ∈  𝑆 ) | 
						
							| 82 | 49 80 81 | seqcl | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∧  ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) )  →  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ 𝑛 )  ∈  𝑆 ) | 
						
							| 83 |  | fveq2 | ⊢ ( 𝑥  =  ( 𝑛  +  1 )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 84 | 83 | eleq1d | ⊢ ( 𝑥  =  ( 𝑛  +  1 )  →  ( ( 𝐹 ‘ 𝑥 )  ∈  𝑆  ↔  ( 𝐹 ‘ ( 𝑛  +  1 ) )  ∈  𝑆 ) ) | 
						
							| 85 | 5 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ( 𝐾 ... 𝑁 ) ( 𝐹 ‘ 𝑥 )  ∈  𝑆 ) | 
						
							| 86 | 85 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∧  ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) )  →  ∀ 𝑥  ∈  ( 𝐾 ... 𝑁 ) ( 𝐹 ‘ 𝑥 )  ∈  𝑆 ) | 
						
							| 87 |  | simpr | ⊢ ( ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∧  ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) )  →  ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) | 
						
							| 88 |  | ssel2 | ⊢ ( ( ( ( 𝑀  +  1 ) ... 𝑁 )  ⊆  ( 𝐾 ... 𝑁 )  ∧  ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) )  →  ( 𝑛  +  1 )  ∈  ( 𝐾 ... 𝑁 ) ) | 
						
							| 89 | 75 87 88 | syl2an | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∧  ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) )  →  ( 𝑛  +  1 )  ∈  ( 𝐾 ... 𝑁 ) ) | 
						
							| 90 | 84 86 89 | rspcdva | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∧  ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) )  →  ( 𝐹 ‘ ( 𝑛  +  1 ) )  ∈  𝑆 ) | 
						
							| 91 | 2 | caovassg | ⊢ ( ( 𝜑  ∧  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  ∈  𝑆  ∧  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ 𝑛 )  ∈  𝑆  ∧  ( 𝐹 ‘ ( 𝑛  +  1 ) )  ∈  𝑆 ) )  →  ( ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ 𝑛 ) )  +  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  =  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ 𝑛 )  +  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 92 | 60 70 82 90 91 | syl13anc | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∧  ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) )  →  ( ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ 𝑛 ) )  +  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  =  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ 𝑛 )  +  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 93 | 59 92 | eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∧  ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) )  →  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ ( 𝑛  +  1 ) ) )  =  ( ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ 𝑛 ) )  +  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 94 | 56 93 | eqeq12d | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∧  ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) )  →  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ ( 𝑛  +  1 ) )  =  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ ( 𝑛  +  1 ) ) )  ↔  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑛 )  +  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  =  ( ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ 𝑛 ) )  +  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 95 | 48 94 | imbitrrid | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ∧  ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) ) )  →  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑛 )  =  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ 𝑛 ) )  →  ( seq 𝐾 (  +  ,  𝐹 ) ‘ ( 𝑛  +  1 ) )  =  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 96 | 47 95 | animpimp2impd | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  →  ( ( 𝜑  →  ( 𝑛  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  →  ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑛 )  =  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ 𝑛 ) ) ) )  →  ( 𝜑  →  ( ( 𝑛  +  1 )  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  →  ( seq 𝐾 (  +  ,  𝐹 ) ‘ ( 𝑛  +  1 ) )  =  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ ( 𝑛  +  1 ) ) ) ) ) ) ) | 
						
							| 97 | 14 21 28 35 43 96 | uzind4 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  →  ( 𝜑  →  ( 𝑁  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  →  ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑁 )  =  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ 𝑁 ) ) ) ) ) | 
						
							| 98 | 3 97 | mpcom | ⊢ ( 𝜑  →  ( 𝑁  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  →  ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑁 )  =  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ 𝑁 ) ) ) ) | 
						
							| 99 | 7 98 | mpd | ⊢ ( 𝜑  →  ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑁 )  =  ( ( seq 𝐾 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( seq ( 𝑀  +  1 ) (  +  ,  𝐹 ) ‘ 𝑁 ) ) ) |