Metamath Proof Explorer


Theorem seqval

Description: Value of the sequence builder function. (Contributed by Mario Carneiro, 24-Jun-2013)

Ref Expression
Hypothesis seqval.1 𝑅 = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 + 1 ) , ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) 𝑦 ) ⟩ ) , ⟨ 𝑀 , ( 𝐹𝑀 ) ⟩ ) ↾ ω )
Assertion seqval seq 𝑀 ( + , 𝐹 ) = ran 𝑅

Proof

Step Hyp Ref Expression
1 seqval.1 𝑅 = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 + 1 ) , ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) 𝑦 ) ⟩ ) , ⟨ 𝑀 , ( 𝐹𝑀 ) ⟩ ) ↾ ω )
2 df-ima ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) ⟩ ) , ⟨ 𝑀 , ( 𝐹𝑀 ) ⟩ ) “ ω ) = ran ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) ⟩ ) , ⟨ 𝑀 , ( 𝐹𝑀 ) ⟩ ) ↾ ω )
3 df-seq seq 𝑀 ( + , 𝐹 ) = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) ⟩ ) , ⟨ 𝑀 , ( 𝐹𝑀 ) ⟩ ) “ ω )
4 eqid V = V
5 fvoveq1 ( 𝑧 = 𝑥 → ( 𝐹 ‘ ( 𝑧 + 1 ) ) = ( 𝐹 ‘ ( 𝑥 + 1 ) ) )
6 5 oveq2d ( 𝑧 = 𝑥 → ( 𝑤 + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) = ( 𝑤 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) )
7 oveq1 ( 𝑤 = 𝑦 → ( 𝑤 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) = ( 𝑦 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) )
8 eqid ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) = ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) )
9 ovex ( 𝑦 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) ∈ V
10 6 7 8 9 ovmpo ( ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) → ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) 𝑦 ) = ( 𝑦 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) )
11 10 el2v ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) 𝑦 ) = ( 𝑦 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) )
12 11 opeq2i ⟨ ( 𝑥 + 1 ) , ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) 𝑦 ) ⟩ = ⟨ ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) ⟩
13 4 4 12 mpoeq123i ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 + 1 ) , ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) 𝑦 ) ⟩ ) = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) ⟩ )
14 rdgeq1 ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 + 1 ) , ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) 𝑦 ) ⟩ ) = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) ⟩ ) → rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 + 1 ) , ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) 𝑦 ) ⟩ ) , ⟨ 𝑀 , ( 𝐹𝑀 ) ⟩ ) = rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) ⟩ ) , ⟨ 𝑀 , ( 𝐹𝑀 ) ⟩ ) )
15 13 14 ax-mp rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 + 1 ) , ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) 𝑦 ) ⟩ ) , ⟨ 𝑀 , ( 𝐹𝑀 ) ⟩ ) = rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) ⟩ ) , ⟨ 𝑀 , ( 𝐹𝑀 ) ⟩ )
16 15 reseq1i ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 + 1 ) , ( 𝑥 ( 𝑧 ∈ V , 𝑤 ∈ V ↦ ( 𝑤 + ( 𝐹 ‘ ( 𝑧 + 1 ) ) ) ) 𝑦 ) ⟩ ) , ⟨ 𝑀 , ( 𝐹𝑀 ) ⟩ ) ↾ ω ) = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) ⟩ ) , ⟨ 𝑀 , ( 𝐹𝑀 ) ⟩ ) ↾ ω )
17 1 16 eqtri 𝑅 = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) ⟩ ) , ⟨ 𝑀 , ( 𝐹𝑀 ) ⟩ ) ↾ ω )
18 17 rneqi ran 𝑅 = ran ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 + 1 ) , ( 𝑦 + ( 𝐹 ‘ ( 𝑥 + 1 ) ) ) ⟩ ) , ⟨ 𝑀 , ( 𝐹𝑀 ) ⟩ ) ↾ ω )
19 2 3 18 3eqtr4i seq 𝑀 ( + , 𝐹 ) = ran 𝑅