| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ser0.1 | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 2 | 1 | ser0 | ⊢ ( 𝑘  ∈  𝑍  →  ( seq 𝑀 (  +  ,  ( 𝑍  ×  { 0 } ) ) ‘ 𝑘 )  =  0 ) | 
						
							| 3 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 4 | 3 | fvconst2 | ⊢ ( 𝑘  ∈  𝑍  →  ( ( 𝑍  ×  { 0 } ) ‘ 𝑘 )  =  0 ) | 
						
							| 5 | 2 4 | eqtr4d | ⊢ ( 𝑘  ∈  𝑍  →  ( seq 𝑀 (  +  ,  ( 𝑍  ×  { 0 } ) ) ‘ 𝑘 )  =  ( ( 𝑍  ×  { 0 } ) ‘ 𝑘 ) ) | 
						
							| 6 | 5 | rgen | ⊢ ∀ 𝑘  ∈  𝑍 ( seq 𝑀 (  +  ,  ( 𝑍  ×  { 0 } ) ) ‘ 𝑘 )  =  ( ( 𝑍  ×  { 0 } ) ‘ 𝑘 ) | 
						
							| 7 |  | seqfn | ⊢ ( 𝑀  ∈  ℤ  →  seq 𝑀 (  +  ,  ( 𝑍  ×  { 0 } ) )  Fn  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 8 | 1 | fneq2i | ⊢ ( seq 𝑀 (  +  ,  ( 𝑍  ×  { 0 } ) )  Fn  𝑍  ↔  seq 𝑀 (  +  ,  ( 𝑍  ×  { 0 } ) )  Fn  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 9 | 7 8 | sylibr | ⊢ ( 𝑀  ∈  ℤ  →  seq 𝑀 (  +  ,  ( 𝑍  ×  { 0 } ) )  Fn  𝑍 ) | 
						
							| 10 | 3 | fconst | ⊢ ( 𝑍  ×  { 0 } ) : 𝑍 ⟶ { 0 } | 
						
							| 11 |  | ffn | ⊢ ( ( 𝑍  ×  { 0 } ) : 𝑍 ⟶ { 0 }  →  ( 𝑍  ×  { 0 } )  Fn  𝑍 ) | 
						
							| 12 | 10 11 | ax-mp | ⊢ ( 𝑍  ×  { 0 } )  Fn  𝑍 | 
						
							| 13 |  | eqfnfv | ⊢ ( ( seq 𝑀 (  +  ,  ( 𝑍  ×  { 0 } ) )  Fn  𝑍  ∧  ( 𝑍  ×  { 0 } )  Fn  𝑍 )  →  ( seq 𝑀 (  +  ,  ( 𝑍  ×  { 0 } ) )  =  ( 𝑍  ×  { 0 } )  ↔  ∀ 𝑘  ∈  𝑍 ( seq 𝑀 (  +  ,  ( 𝑍  ×  { 0 } ) ) ‘ 𝑘 )  =  ( ( 𝑍  ×  { 0 } ) ‘ 𝑘 ) ) ) | 
						
							| 14 | 9 12 13 | sylancl | ⊢ ( 𝑀  ∈  ℤ  →  ( seq 𝑀 (  +  ,  ( 𝑍  ×  { 0 } ) )  =  ( 𝑍  ×  { 0 } )  ↔  ∀ 𝑘  ∈  𝑍 ( seq 𝑀 (  +  ,  ( 𝑍  ×  { 0 } ) ) ‘ 𝑘 )  =  ( ( 𝑍  ×  { 0 } ) ‘ 𝑘 ) ) ) | 
						
							| 15 | 6 14 | mpbiri | ⊢ ( 𝑀  ∈  ℤ  →  seq 𝑀 (  +  ,  ( 𝑍  ×  { 0 } ) )  =  ( 𝑍  ×  { 0 } ) ) |