Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
⊢ ( 𝑗 = 1 → ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑗 ) = ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 1 ) ) |
2 |
|
oveq1 |
⊢ ( 𝑗 = 1 → ( 𝑗 · 𝐴 ) = ( 1 · 𝐴 ) ) |
3 |
1 2
|
eqeq12d |
⊢ ( 𝑗 = 1 → ( ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑗 ) = ( 𝑗 · 𝐴 ) ↔ ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 1 ) = ( 1 · 𝐴 ) ) ) |
4 |
3
|
imbi2d |
⊢ ( 𝑗 = 1 → ( ( 𝐴 ∈ ℂ → ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑗 ) = ( 𝑗 · 𝐴 ) ) ↔ ( 𝐴 ∈ ℂ → ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 1 ) = ( 1 · 𝐴 ) ) ) ) |
5 |
|
fveq2 |
⊢ ( 𝑗 = 𝑘 → ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑗 ) = ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑘 ) ) |
6 |
|
oveq1 |
⊢ ( 𝑗 = 𝑘 → ( 𝑗 · 𝐴 ) = ( 𝑘 · 𝐴 ) ) |
7 |
5 6
|
eqeq12d |
⊢ ( 𝑗 = 𝑘 → ( ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑗 ) = ( 𝑗 · 𝐴 ) ↔ ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑘 ) = ( 𝑘 · 𝐴 ) ) ) |
8 |
7
|
imbi2d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝐴 ∈ ℂ → ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑗 ) = ( 𝑗 · 𝐴 ) ) ↔ ( 𝐴 ∈ ℂ → ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑘 ) = ( 𝑘 · 𝐴 ) ) ) ) |
9 |
|
fveq2 |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑗 ) = ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ ( 𝑘 + 1 ) ) ) |
10 |
|
oveq1 |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝑗 · 𝐴 ) = ( ( 𝑘 + 1 ) · 𝐴 ) ) |
11 |
9 10
|
eqeq12d |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑗 ) = ( 𝑗 · 𝐴 ) ↔ ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ ( 𝑘 + 1 ) ) = ( ( 𝑘 + 1 ) · 𝐴 ) ) ) |
12 |
11
|
imbi2d |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 𝐴 ∈ ℂ → ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑗 ) = ( 𝑗 · 𝐴 ) ) ↔ ( 𝐴 ∈ ℂ → ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ ( 𝑘 + 1 ) ) = ( ( 𝑘 + 1 ) · 𝐴 ) ) ) ) |
13 |
|
fveq2 |
⊢ ( 𝑗 = 𝑁 → ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑗 ) = ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) ) |
14 |
|
oveq1 |
⊢ ( 𝑗 = 𝑁 → ( 𝑗 · 𝐴 ) = ( 𝑁 · 𝐴 ) ) |
15 |
13 14
|
eqeq12d |
⊢ ( 𝑗 = 𝑁 → ( ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑗 ) = ( 𝑗 · 𝐴 ) ↔ ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) = ( 𝑁 · 𝐴 ) ) ) |
16 |
15
|
imbi2d |
⊢ ( 𝑗 = 𝑁 → ( ( 𝐴 ∈ ℂ → ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑗 ) = ( 𝑗 · 𝐴 ) ) ↔ ( 𝐴 ∈ ℂ → ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) = ( 𝑁 · 𝐴 ) ) ) ) |
17 |
|
1z |
⊢ 1 ∈ ℤ |
18 |
|
1nn |
⊢ 1 ∈ ℕ |
19 |
|
fvconst2g |
⊢ ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℕ ) → ( ( ℕ × { 𝐴 } ) ‘ 1 ) = 𝐴 ) |
20 |
18 19
|
mpan2 |
⊢ ( 𝐴 ∈ ℂ → ( ( ℕ × { 𝐴 } ) ‘ 1 ) = 𝐴 ) |
21 |
|
mulid2 |
⊢ ( 𝐴 ∈ ℂ → ( 1 · 𝐴 ) = 𝐴 ) |
22 |
20 21
|
eqtr4d |
⊢ ( 𝐴 ∈ ℂ → ( ( ℕ × { 𝐴 } ) ‘ 1 ) = ( 1 · 𝐴 ) ) |
23 |
17 22
|
seq1i |
⊢ ( 𝐴 ∈ ℂ → ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 1 ) = ( 1 · 𝐴 ) ) |
24 |
|
oveq1 |
⊢ ( ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑘 ) = ( 𝑘 · 𝐴 ) → ( ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑘 ) + 𝐴 ) = ( ( 𝑘 · 𝐴 ) + 𝐴 ) ) |
25 |
|
seqp1 |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 1 ) → ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ ( 𝑘 + 1 ) ) = ( ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑘 ) + ( ( ℕ × { 𝐴 } ) ‘ ( 𝑘 + 1 ) ) ) ) |
26 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
27 |
25 26
|
eleq2s |
⊢ ( 𝑘 ∈ ℕ → ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ ( 𝑘 + 1 ) ) = ( ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑘 ) + ( ( ℕ × { 𝐴 } ) ‘ ( 𝑘 + 1 ) ) ) ) |
28 |
27
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ ( 𝑘 + 1 ) ) = ( ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑘 ) + ( ( ℕ × { 𝐴 } ) ‘ ( 𝑘 + 1 ) ) ) ) |
29 |
|
peano2nn |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 + 1 ) ∈ ℕ ) |
30 |
|
fvconst2g |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑘 + 1 ) ∈ ℕ ) → ( ( ℕ × { 𝐴 } ) ‘ ( 𝑘 + 1 ) ) = 𝐴 ) |
31 |
29 30
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ ) → ( ( ℕ × { 𝐴 } ) ‘ ( 𝑘 + 1 ) ) = 𝐴 ) |
32 |
31
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ ) → ( ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑘 ) + ( ( ℕ × { 𝐴 } ) ‘ ( 𝑘 + 1 ) ) ) = ( ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑘 ) + 𝐴 ) ) |
33 |
28 32
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ ( 𝑘 + 1 ) ) = ( ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑘 ) + 𝐴 ) ) |
34 |
|
nncn |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℂ ) |
35 |
|
id |
⊢ ( 𝐴 ∈ ℂ → 𝐴 ∈ ℂ ) |
36 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
37 |
|
adddir |
⊢ ( ( 𝑘 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 𝑘 + 1 ) · 𝐴 ) = ( ( 𝑘 · 𝐴 ) + ( 1 · 𝐴 ) ) ) |
38 |
36 37
|
mp3an2 |
⊢ ( ( 𝑘 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 𝑘 + 1 ) · 𝐴 ) = ( ( 𝑘 · 𝐴 ) + ( 1 · 𝐴 ) ) ) |
39 |
34 35 38
|
syl2anr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 + 1 ) · 𝐴 ) = ( ( 𝑘 · 𝐴 ) + ( 1 · 𝐴 ) ) ) |
40 |
21
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ ) → ( 1 · 𝐴 ) = 𝐴 ) |
41 |
40
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 · 𝐴 ) + ( 1 · 𝐴 ) ) = ( ( 𝑘 · 𝐴 ) + 𝐴 ) ) |
42 |
39 41
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 + 1 ) · 𝐴 ) = ( ( 𝑘 · 𝐴 ) + 𝐴 ) ) |
43 |
33 42
|
eqeq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ ) → ( ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ ( 𝑘 + 1 ) ) = ( ( 𝑘 + 1 ) · 𝐴 ) ↔ ( ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑘 ) + 𝐴 ) = ( ( 𝑘 · 𝐴 ) + 𝐴 ) ) ) |
44 |
24 43
|
syl5ibr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ ) → ( ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑘 ) = ( 𝑘 · 𝐴 ) → ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ ( 𝑘 + 1 ) ) = ( ( 𝑘 + 1 ) · 𝐴 ) ) ) |
45 |
44
|
expcom |
⊢ ( 𝑘 ∈ ℕ → ( 𝐴 ∈ ℂ → ( ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑘 ) = ( 𝑘 · 𝐴 ) → ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ ( 𝑘 + 1 ) ) = ( ( 𝑘 + 1 ) · 𝐴 ) ) ) ) |
46 |
45
|
a2d |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝐴 ∈ ℂ → ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑘 ) = ( 𝑘 · 𝐴 ) ) → ( 𝐴 ∈ ℂ → ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ ( 𝑘 + 1 ) ) = ( ( 𝑘 + 1 ) · 𝐴 ) ) ) ) |
47 |
4 8 12 16 23 46
|
nnind |
⊢ ( 𝑁 ∈ ℕ → ( 𝐴 ∈ ℂ → ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) = ( 𝑁 · 𝐴 ) ) ) |
48 |
47
|
impcom |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) = ( 𝑁 · 𝐴 ) ) |