| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq2 | ⊢ ( 𝑗  =  1  →  ( seq 1 (  +  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ 𝑗 )  =  ( seq 1 (  +  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ 1 ) ) | 
						
							| 2 |  | oveq1 | ⊢ ( 𝑗  =  1  →  ( 𝑗  ·  𝐴 )  =  ( 1  ·  𝐴 ) ) | 
						
							| 3 | 1 2 | eqeq12d | ⊢ ( 𝑗  =  1  →  ( ( seq 1 (  +  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ 𝑗 )  =  ( 𝑗  ·  𝐴 )  ↔  ( seq 1 (  +  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ 1 )  =  ( 1  ·  𝐴 ) ) ) | 
						
							| 4 | 3 | imbi2d | ⊢ ( 𝑗  =  1  →  ( ( 𝐴  ∈  ℂ  →  ( seq 1 (  +  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ 𝑗 )  =  ( 𝑗  ·  𝐴 ) )  ↔  ( 𝐴  ∈  ℂ  →  ( seq 1 (  +  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ 1 )  =  ( 1  ·  𝐴 ) ) ) ) | 
						
							| 5 |  | fveq2 | ⊢ ( 𝑗  =  𝑘  →  ( seq 1 (  +  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ 𝑗 )  =  ( seq 1 (  +  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ 𝑘 ) ) | 
						
							| 6 |  | oveq1 | ⊢ ( 𝑗  =  𝑘  →  ( 𝑗  ·  𝐴 )  =  ( 𝑘  ·  𝐴 ) ) | 
						
							| 7 | 5 6 | eqeq12d | ⊢ ( 𝑗  =  𝑘  →  ( ( seq 1 (  +  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ 𝑗 )  =  ( 𝑗  ·  𝐴 )  ↔  ( seq 1 (  +  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ 𝑘 )  =  ( 𝑘  ·  𝐴 ) ) ) | 
						
							| 8 | 7 | imbi2d | ⊢ ( 𝑗  =  𝑘  →  ( ( 𝐴  ∈  ℂ  →  ( seq 1 (  +  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ 𝑗 )  =  ( 𝑗  ·  𝐴 ) )  ↔  ( 𝐴  ∈  ℂ  →  ( seq 1 (  +  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ 𝑘 )  =  ( 𝑘  ·  𝐴 ) ) ) ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝑗  =  ( 𝑘  +  1 )  →  ( seq 1 (  +  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ 𝑗 )  =  ( seq 1 (  +  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 10 |  | oveq1 | ⊢ ( 𝑗  =  ( 𝑘  +  1 )  →  ( 𝑗  ·  𝐴 )  =  ( ( 𝑘  +  1 )  ·  𝐴 ) ) | 
						
							| 11 | 9 10 | eqeq12d | ⊢ ( 𝑗  =  ( 𝑘  +  1 )  →  ( ( seq 1 (  +  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ 𝑗 )  =  ( 𝑗  ·  𝐴 )  ↔  ( seq 1 (  +  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ ( 𝑘  +  1 ) )  =  ( ( 𝑘  +  1 )  ·  𝐴 ) ) ) | 
						
							| 12 | 11 | imbi2d | ⊢ ( 𝑗  =  ( 𝑘  +  1 )  →  ( ( 𝐴  ∈  ℂ  →  ( seq 1 (  +  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ 𝑗 )  =  ( 𝑗  ·  𝐴 ) )  ↔  ( 𝐴  ∈  ℂ  →  ( seq 1 (  +  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ ( 𝑘  +  1 ) )  =  ( ( 𝑘  +  1 )  ·  𝐴 ) ) ) ) | 
						
							| 13 |  | fveq2 | ⊢ ( 𝑗  =  𝑁  →  ( seq 1 (  +  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ 𝑗 )  =  ( seq 1 (  +  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ 𝑁 ) ) | 
						
							| 14 |  | oveq1 | ⊢ ( 𝑗  =  𝑁  →  ( 𝑗  ·  𝐴 )  =  ( 𝑁  ·  𝐴 ) ) | 
						
							| 15 | 13 14 | eqeq12d | ⊢ ( 𝑗  =  𝑁  →  ( ( seq 1 (  +  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ 𝑗 )  =  ( 𝑗  ·  𝐴 )  ↔  ( seq 1 (  +  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ 𝑁 )  =  ( 𝑁  ·  𝐴 ) ) ) | 
						
							| 16 | 15 | imbi2d | ⊢ ( 𝑗  =  𝑁  →  ( ( 𝐴  ∈  ℂ  →  ( seq 1 (  +  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ 𝑗 )  =  ( 𝑗  ·  𝐴 ) )  ↔  ( 𝐴  ∈  ℂ  →  ( seq 1 (  +  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ 𝑁 )  =  ( 𝑁  ·  𝐴 ) ) ) ) | 
						
							| 17 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 18 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 19 |  | fvconst2g | ⊢ ( ( 𝐴  ∈  ℂ  ∧  1  ∈  ℕ )  →  ( ( ℕ  ×  { 𝐴 } ) ‘ 1 )  =  𝐴 ) | 
						
							| 20 | 18 19 | mpan2 | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ℕ  ×  { 𝐴 } ) ‘ 1 )  =  𝐴 ) | 
						
							| 21 |  | mullid | ⊢ ( 𝐴  ∈  ℂ  →  ( 1  ·  𝐴 )  =  𝐴 ) | 
						
							| 22 | 20 21 | eqtr4d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ℕ  ×  { 𝐴 } ) ‘ 1 )  =  ( 1  ·  𝐴 ) ) | 
						
							| 23 | 17 22 | seq1i | ⊢ ( 𝐴  ∈  ℂ  →  ( seq 1 (  +  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ 1 )  =  ( 1  ·  𝐴 ) ) | 
						
							| 24 |  | oveq1 | ⊢ ( ( seq 1 (  +  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ 𝑘 )  =  ( 𝑘  ·  𝐴 )  →  ( ( seq 1 (  +  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ 𝑘 )  +  𝐴 )  =  ( ( 𝑘  ·  𝐴 )  +  𝐴 ) ) | 
						
							| 25 |  | seqp1 | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 1 )  →  ( seq 1 (  +  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ ( 𝑘  +  1 ) )  =  ( ( seq 1 (  +  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ 𝑘 )  +  ( ( ℕ  ×  { 𝐴 } ) ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 26 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 27 | 25 26 | eleq2s | ⊢ ( 𝑘  ∈  ℕ  →  ( seq 1 (  +  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ ( 𝑘  +  1 ) )  =  ( ( seq 1 (  +  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ 𝑘 )  +  ( ( ℕ  ×  { 𝐴 } ) ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 28 | 27 | adantl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑘  ∈  ℕ )  →  ( seq 1 (  +  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ ( 𝑘  +  1 ) )  =  ( ( seq 1 (  +  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ 𝑘 )  +  ( ( ℕ  ×  { 𝐴 } ) ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 29 |  | peano2nn | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝑘  +  1 )  ∈  ℕ ) | 
						
							| 30 |  | fvconst2g | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( 𝑘  +  1 )  ∈  ℕ )  →  ( ( ℕ  ×  { 𝐴 } ) ‘ ( 𝑘  +  1 ) )  =  𝐴 ) | 
						
							| 31 | 29 30 | sylan2 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑘  ∈  ℕ )  →  ( ( ℕ  ×  { 𝐴 } ) ‘ ( 𝑘  +  1 ) )  =  𝐴 ) | 
						
							| 32 | 31 | oveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑘  ∈  ℕ )  →  ( ( seq 1 (  +  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ 𝑘 )  +  ( ( ℕ  ×  { 𝐴 } ) ‘ ( 𝑘  +  1 ) ) )  =  ( ( seq 1 (  +  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ 𝑘 )  +  𝐴 ) ) | 
						
							| 33 | 28 32 | eqtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑘  ∈  ℕ )  →  ( seq 1 (  +  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ ( 𝑘  +  1 ) )  =  ( ( seq 1 (  +  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ 𝑘 )  +  𝐴 ) ) | 
						
							| 34 |  | nncn | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ∈  ℂ ) | 
						
							| 35 |  | id | ⊢ ( 𝐴  ∈  ℂ  →  𝐴  ∈  ℂ ) | 
						
							| 36 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 37 |  | adddir | ⊢ ( ( 𝑘  ∈  ℂ  ∧  1  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( ( 𝑘  +  1 )  ·  𝐴 )  =  ( ( 𝑘  ·  𝐴 )  +  ( 1  ·  𝐴 ) ) ) | 
						
							| 38 | 36 37 | mp3an2 | ⊢ ( ( 𝑘  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( ( 𝑘  +  1 )  ·  𝐴 )  =  ( ( 𝑘  ·  𝐴 )  +  ( 1  ·  𝐴 ) ) ) | 
						
							| 39 | 34 35 38 | syl2anr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑘  +  1 )  ·  𝐴 )  =  ( ( 𝑘  ·  𝐴 )  +  ( 1  ·  𝐴 ) ) ) | 
						
							| 40 | 21 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑘  ∈  ℕ )  →  ( 1  ·  𝐴 )  =  𝐴 ) | 
						
							| 41 | 40 | oveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑘  ·  𝐴 )  +  ( 1  ·  𝐴 ) )  =  ( ( 𝑘  ·  𝐴 )  +  𝐴 ) ) | 
						
							| 42 | 39 41 | eqtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑘  +  1 )  ·  𝐴 )  =  ( ( 𝑘  ·  𝐴 )  +  𝐴 ) ) | 
						
							| 43 | 33 42 | eqeq12d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑘  ∈  ℕ )  →  ( ( seq 1 (  +  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ ( 𝑘  +  1 ) )  =  ( ( 𝑘  +  1 )  ·  𝐴 )  ↔  ( ( seq 1 (  +  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ 𝑘 )  +  𝐴 )  =  ( ( 𝑘  ·  𝐴 )  +  𝐴 ) ) ) | 
						
							| 44 | 24 43 | imbitrrid | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑘  ∈  ℕ )  →  ( ( seq 1 (  +  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ 𝑘 )  =  ( 𝑘  ·  𝐴 )  →  ( seq 1 (  +  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ ( 𝑘  +  1 ) )  =  ( ( 𝑘  +  1 )  ·  𝐴 ) ) ) | 
						
							| 45 | 44 | expcom | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝐴  ∈  ℂ  →  ( ( seq 1 (  +  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ 𝑘 )  =  ( 𝑘  ·  𝐴 )  →  ( seq 1 (  +  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ ( 𝑘  +  1 ) )  =  ( ( 𝑘  +  1 )  ·  𝐴 ) ) ) ) | 
						
							| 46 | 45 | a2d | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝐴  ∈  ℂ  →  ( seq 1 (  +  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ 𝑘 )  =  ( 𝑘  ·  𝐴 ) )  →  ( 𝐴  ∈  ℂ  →  ( seq 1 (  +  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ ( 𝑘  +  1 ) )  =  ( ( 𝑘  +  1 )  ·  𝐴 ) ) ) ) | 
						
							| 47 | 4 8 12 16 23 46 | nnind | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝐴  ∈  ℂ  →  ( seq 1 (  +  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ 𝑁 )  =  ( 𝑁  ·  𝐴 ) ) ) | 
						
							| 48 | 47 | impcom | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℕ )  →  ( seq 1 (  +  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ 𝑁 )  =  ( 𝑁  ·  𝐴 ) ) |