Metamath Proof Explorer


Theorem serclim0

Description: The zero series converges to zero. (Contributed by Paul Chapman, 9-Feb-2008) (Proof shortened by Mario Carneiro, 31-Jan-2014)

Ref Expression
Assertion serclim0 ( 𝑀 ∈ ℤ → seq 𝑀 ( + , ( ( ℤ𝑀 ) × { 0 } ) ) ⇝ 0 )

Proof

Step Hyp Ref Expression
1 eqid ( ℤ𝑀 ) = ( ℤ𝑀 )
2 1 ser0f ( 𝑀 ∈ ℤ → seq 𝑀 ( + , ( ( ℤ𝑀 ) × { 0 } ) ) = ( ( ℤ𝑀 ) × { 0 } ) )
3 0cn 0 ∈ ℂ
4 ssid ( ℤ𝑀 ) ⊆ ( ℤ𝑀 )
5 fvex ( ℤ𝑀 ) ∈ V
6 4 5 climconst2 ( ( 0 ∈ ℂ ∧ 𝑀 ∈ ℤ ) → ( ( ℤ𝑀 ) × { 0 } ) ⇝ 0 )
7 3 6 mpan ( 𝑀 ∈ ℤ → ( ( ℤ𝑀 ) × { 0 } ) ⇝ 0 )
8 2 7 eqbrtrd ( 𝑀 ∈ ℤ → seq 𝑀 ( + , ( ( ℤ𝑀 ) × { 0 } ) ) ⇝ 0 )