Description: The zero series converges to zero. (Contributed by Paul Chapman, 9-Feb-2008) (Proof shortened by Mario Carneiro, 31-Jan-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | serclim0 | ⊢ ( 𝑀 ∈ ℤ → seq 𝑀 ( + , ( ( ℤ≥ ‘ 𝑀 ) × { 0 } ) ) ⇝ 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | ⊢ ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑀 ) | |
2 | 1 | ser0f | ⊢ ( 𝑀 ∈ ℤ → seq 𝑀 ( + , ( ( ℤ≥ ‘ 𝑀 ) × { 0 } ) ) = ( ( ℤ≥ ‘ 𝑀 ) × { 0 } ) ) |
3 | 0cn | ⊢ 0 ∈ ℂ | |
4 | ssid | ⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ( ℤ≥ ‘ 𝑀 ) | |
5 | fvex | ⊢ ( ℤ≥ ‘ 𝑀 ) ∈ V | |
6 | 4 5 | climconst2 | ⊢ ( ( 0 ∈ ℂ ∧ 𝑀 ∈ ℤ ) → ( ( ℤ≥ ‘ 𝑀 ) × { 0 } ) ⇝ 0 ) |
7 | 3 6 | mpan | ⊢ ( 𝑀 ∈ ℤ → ( ( ℤ≥ ‘ 𝑀 ) × { 0 } ) ⇝ 0 ) |
8 | 2 7 | eqbrtrd | ⊢ ( 𝑀 ∈ ℤ → seq 𝑀 ( + , ( ( ℤ≥ ‘ 𝑀 ) × { 0 } ) ) ⇝ 0 ) |