Metamath Proof Explorer


Theorem serf

Description: An infinite series of complex terms is a function from NN to CC . (Contributed by NM, 18-Apr-2005) (Revised by Mario Carneiro, 27-May-2014)

Ref Expression
Hypotheses serf.1 𝑍 = ( ℤ𝑀 )
serf.2 ( 𝜑𝑀 ∈ ℤ )
serf.3 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) ∈ ℂ )
Assertion serf ( 𝜑 → seq 𝑀 ( + , 𝐹 ) : 𝑍 ⟶ ℂ )

Proof

Step Hyp Ref Expression
1 serf.1 𝑍 = ( ℤ𝑀 )
2 serf.2 ( 𝜑𝑀 ∈ ℤ )
3 serf.3 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) ∈ ℂ )
4 addcl ( ( 𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 𝑘 + 𝑥 ) ∈ ℂ )
5 4 adantl ( ( 𝜑 ∧ ( 𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( 𝑘 + 𝑥 ) ∈ ℂ )
6 1 2 3 5 seqf ( 𝜑 → seq 𝑀 ( + , 𝐹 ) : 𝑍 ⟶ ℂ )