Description: An infinite series of real numbers is a function from NN to RR . (Contributed by NM, 18-Apr-2005) (Revised by Mario Carneiro, 27-May-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | serf.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
serf.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
serfre.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) | ||
Assertion | serfre | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) : 𝑍 ⟶ ℝ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | serf.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
2 | serf.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
3 | serfre.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) | |
4 | readdcl | ⊢ ( ( 𝑘 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑘 + 𝑥 ) ∈ ℝ ) | |
5 | 4 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℝ ∧ 𝑥 ∈ ℝ ) ) → ( 𝑘 + 𝑥 ) ∈ ℝ ) |
6 | 1 2 3 5 | seqf | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) : 𝑍 ⟶ ℝ ) |