Metamath Proof Explorer


Theorem serfre

Description: An infinite series of real numbers is a function from NN to RR . (Contributed by NM, 18-Apr-2005) (Revised by Mario Carneiro, 27-May-2014)

Ref Expression
Hypotheses serf.1 𝑍 = ( ℤ𝑀 )
serf.2 ( 𝜑𝑀 ∈ ℤ )
serfre.3 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) ∈ ℝ )
Assertion serfre ( 𝜑 → seq 𝑀 ( + , 𝐹 ) : 𝑍 ⟶ ℝ )

Proof

Step Hyp Ref Expression
1 serf.1 𝑍 = ( ℤ𝑀 )
2 serf.2 ( 𝜑𝑀 ∈ ℤ )
3 serfre.3 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) ∈ ℝ )
4 readdcl ( ( 𝑘 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑘 + 𝑥 ) ∈ ℝ )
5 4 adantl ( ( 𝜑 ∧ ( 𝑘 ∈ ℝ ∧ 𝑥 ∈ ℝ ) ) → ( 𝑘 + 𝑥 ) ∈ ℝ )
6 1 2 3 5 seqf ( 𝜑 → seq 𝑀 ( + , 𝐹 ) : 𝑍 ⟶ ℝ )