Step |
Hyp |
Ref |
Expression |
1 |
|
serge0.1 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
2 |
|
serge0.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
3 |
|
serge0.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → 0 ≤ ( 𝐹 ‘ 𝑘 ) ) |
4 |
|
breq2 |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑘 ) → ( 0 ≤ 𝑥 ↔ 0 ≤ ( 𝐹 ‘ 𝑘 ) ) ) |
5 |
4 2 3
|
elrabd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ { 𝑥 ∈ ℝ ∣ 0 ≤ 𝑥 } ) |
6 |
|
breq2 |
⊢ ( 𝑥 = 𝑘 → ( 0 ≤ 𝑥 ↔ 0 ≤ 𝑘 ) ) |
7 |
6
|
elrab |
⊢ ( 𝑘 ∈ { 𝑥 ∈ ℝ ∣ 0 ≤ 𝑥 } ↔ ( 𝑘 ∈ ℝ ∧ 0 ≤ 𝑘 ) ) |
8 |
|
breq2 |
⊢ ( 𝑥 = 𝑦 → ( 0 ≤ 𝑥 ↔ 0 ≤ 𝑦 ) ) |
9 |
8
|
elrab |
⊢ ( 𝑦 ∈ { 𝑥 ∈ ℝ ∣ 0 ≤ 𝑥 } ↔ ( 𝑦 ∈ ℝ ∧ 0 ≤ 𝑦 ) ) |
10 |
|
breq2 |
⊢ ( 𝑥 = ( 𝑘 + 𝑦 ) → ( 0 ≤ 𝑥 ↔ 0 ≤ ( 𝑘 + 𝑦 ) ) ) |
11 |
|
readdcl |
⊢ ( ( 𝑘 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑘 + 𝑦 ) ∈ ℝ ) |
12 |
11
|
ad2ant2r |
⊢ ( ( ( 𝑘 ∈ ℝ ∧ 0 ≤ 𝑘 ) ∧ ( 𝑦 ∈ ℝ ∧ 0 ≤ 𝑦 ) ) → ( 𝑘 + 𝑦 ) ∈ ℝ ) |
13 |
|
addge0 |
⊢ ( ( ( 𝑘 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 0 ≤ 𝑘 ∧ 0 ≤ 𝑦 ) ) → 0 ≤ ( 𝑘 + 𝑦 ) ) |
14 |
13
|
an4s |
⊢ ( ( ( 𝑘 ∈ ℝ ∧ 0 ≤ 𝑘 ) ∧ ( 𝑦 ∈ ℝ ∧ 0 ≤ 𝑦 ) ) → 0 ≤ ( 𝑘 + 𝑦 ) ) |
15 |
10 12 14
|
elrabd |
⊢ ( ( ( 𝑘 ∈ ℝ ∧ 0 ≤ 𝑘 ) ∧ ( 𝑦 ∈ ℝ ∧ 0 ≤ 𝑦 ) ) → ( 𝑘 + 𝑦 ) ∈ { 𝑥 ∈ ℝ ∣ 0 ≤ 𝑥 } ) |
16 |
7 9 15
|
syl2anb |
⊢ ( ( 𝑘 ∈ { 𝑥 ∈ ℝ ∣ 0 ≤ 𝑥 } ∧ 𝑦 ∈ { 𝑥 ∈ ℝ ∣ 0 ≤ 𝑥 } ) → ( 𝑘 + 𝑦 ) ∈ { 𝑥 ∈ ℝ ∣ 0 ≤ 𝑥 } ) |
17 |
16
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ { 𝑥 ∈ ℝ ∣ 0 ≤ 𝑥 } ∧ 𝑦 ∈ { 𝑥 ∈ ℝ ∣ 0 ≤ 𝑥 } ) ) → ( 𝑘 + 𝑦 ) ∈ { 𝑥 ∈ ℝ ∣ 0 ≤ 𝑥 } ) |
18 |
1 5 17
|
seqcl |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ∈ { 𝑥 ∈ ℝ ∣ 0 ≤ 𝑥 } ) |
19 |
|
breq2 |
⊢ ( 𝑥 = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) → ( 0 ≤ 𝑥 ↔ 0 ≤ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) |
20 |
19
|
elrab |
⊢ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ∈ { 𝑥 ∈ ℝ ∣ 0 ≤ 𝑥 } ↔ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ∈ ℝ ∧ 0 ≤ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) |
21 |
20
|
simprbi |
⊢ ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ∈ { 𝑥 ∈ ℝ ∣ 0 ≤ 𝑥 } → 0 ≤ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) |
22 |
18 21
|
syl |
⊢ ( 𝜑 → 0 ≤ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) |