| Step | Hyp | Ref | Expression | 
						
							| 1 |  | serge0.1 | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 2 |  | serge0.2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... 𝑁 ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 3 |  | serge0.3 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... 𝑁 ) )  →  0  ≤  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 4 |  | breq2 | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑘 )  →  ( 0  ≤  𝑥  ↔  0  ≤  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 5 | 4 2 3 | elrabd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... 𝑁 ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  { 𝑥  ∈  ℝ  ∣  0  ≤  𝑥 } ) | 
						
							| 6 |  | breq2 | ⊢ ( 𝑥  =  𝑘  →  ( 0  ≤  𝑥  ↔  0  ≤  𝑘 ) ) | 
						
							| 7 | 6 | elrab | ⊢ ( 𝑘  ∈  { 𝑥  ∈  ℝ  ∣  0  ≤  𝑥 }  ↔  ( 𝑘  ∈  ℝ  ∧  0  ≤  𝑘 ) ) | 
						
							| 8 |  | breq2 | ⊢ ( 𝑥  =  𝑦  →  ( 0  ≤  𝑥  ↔  0  ≤  𝑦 ) ) | 
						
							| 9 | 8 | elrab | ⊢ ( 𝑦  ∈  { 𝑥  ∈  ℝ  ∣  0  ≤  𝑥 }  ↔  ( 𝑦  ∈  ℝ  ∧  0  ≤  𝑦 ) ) | 
						
							| 10 |  | breq2 | ⊢ ( 𝑥  =  ( 𝑘  +  𝑦 )  →  ( 0  ≤  𝑥  ↔  0  ≤  ( 𝑘  +  𝑦 ) ) ) | 
						
							| 11 |  | readdcl | ⊢ ( ( 𝑘  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( 𝑘  +  𝑦 )  ∈  ℝ ) | 
						
							| 12 | 11 | ad2ant2r | ⊢ ( ( ( 𝑘  ∈  ℝ  ∧  0  ≤  𝑘 )  ∧  ( 𝑦  ∈  ℝ  ∧  0  ≤  𝑦 ) )  →  ( 𝑘  +  𝑦 )  ∈  ℝ ) | 
						
							| 13 |  | addge0 | ⊢ ( ( ( 𝑘  ∈  ℝ  ∧  𝑦  ∈  ℝ )  ∧  ( 0  ≤  𝑘  ∧  0  ≤  𝑦 ) )  →  0  ≤  ( 𝑘  +  𝑦 ) ) | 
						
							| 14 | 13 | an4s | ⊢ ( ( ( 𝑘  ∈  ℝ  ∧  0  ≤  𝑘 )  ∧  ( 𝑦  ∈  ℝ  ∧  0  ≤  𝑦 ) )  →  0  ≤  ( 𝑘  +  𝑦 ) ) | 
						
							| 15 | 10 12 14 | elrabd | ⊢ ( ( ( 𝑘  ∈  ℝ  ∧  0  ≤  𝑘 )  ∧  ( 𝑦  ∈  ℝ  ∧  0  ≤  𝑦 ) )  →  ( 𝑘  +  𝑦 )  ∈  { 𝑥  ∈  ℝ  ∣  0  ≤  𝑥 } ) | 
						
							| 16 | 7 9 15 | syl2anb | ⊢ ( ( 𝑘  ∈  { 𝑥  ∈  ℝ  ∣  0  ≤  𝑥 }  ∧  𝑦  ∈  { 𝑥  ∈  ℝ  ∣  0  ≤  𝑥 } )  →  ( 𝑘  +  𝑦 )  ∈  { 𝑥  ∈  ℝ  ∣  0  ≤  𝑥 } ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  { 𝑥  ∈  ℝ  ∣  0  ≤  𝑥 }  ∧  𝑦  ∈  { 𝑥  ∈  ℝ  ∣  0  ≤  𝑥 } ) )  →  ( 𝑘  +  𝑦 )  ∈  { 𝑥  ∈  ℝ  ∣  0  ≤  𝑥 } ) | 
						
							| 18 | 1 5 17 | seqcl | ⊢ ( 𝜑  →  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑁 )  ∈  { 𝑥  ∈  ℝ  ∣  0  ≤  𝑥 } ) | 
						
							| 19 |  | breq2 | ⊢ ( 𝑥  =  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑁 )  →  ( 0  ≤  𝑥  ↔  0  ≤  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑁 ) ) ) | 
						
							| 20 | 19 | elrab | ⊢ ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑁 )  ∈  { 𝑥  ∈  ℝ  ∣  0  ≤  𝑥 }  ↔  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑁 )  ∈  ℝ  ∧  0  ≤  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑁 ) ) ) | 
						
							| 21 | 20 | simprbi | ⊢ ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑁 )  ∈  { 𝑥  ∈  ℝ  ∣  0  ≤  𝑥 }  →  0  ≤  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑁 ) ) | 
						
							| 22 | 18 21 | syl | ⊢ ( 𝜑  →  0  ≤  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑁 ) ) |