Step |
Hyp |
Ref |
Expression |
1 |
|
serge0.1 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
2 |
|
serge0.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
3 |
|
serle.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
4 |
|
serle.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐺 ‘ 𝑘 ) ) |
5 |
|
fveq2 |
⊢ ( 𝑥 = 𝑘 → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑘 ) ) |
6 |
|
fveq2 |
⊢ ( 𝑥 = 𝑘 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑘 ) ) |
7 |
5 6
|
oveq12d |
⊢ ( 𝑥 = 𝑘 → ( ( 𝐺 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐺 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑘 ) ) ) |
8 |
|
eqid |
⊢ ( 𝑥 ∈ V ↦ ( ( 𝐺 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ V ↦ ( ( 𝐺 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑥 ) ) ) |
9 |
|
ovex |
⊢ ( ( 𝐺 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑘 ) ) ∈ V |
10 |
7 8 9
|
fvmpt |
⊢ ( 𝑘 ∈ V → ( ( 𝑥 ∈ V ↦ ( ( 𝐺 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( ( 𝐺 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑘 ) ) ) |
11 |
10
|
elv |
⊢ ( ( 𝑥 ∈ V ↦ ( ( 𝐺 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( ( 𝐺 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑘 ) ) |
12 |
3 2
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝐺 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) |
13 |
11 12
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝑥 ∈ V ↦ ( ( 𝐺 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝑘 ) ∈ ℝ ) |
14 |
3 2
|
subge0d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 0 ≤ ( ( 𝐺 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑘 ) ) ↔ ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐺 ‘ 𝑘 ) ) ) |
15 |
4 14
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → 0 ≤ ( ( 𝐺 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑘 ) ) ) |
16 |
15 11
|
breqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → 0 ≤ ( ( 𝑥 ∈ V ↦ ( ( 𝐺 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝑘 ) ) |
17 |
1 13 16
|
serge0 |
⊢ ( 𝜑 → 0 ≤ ( seq 𝑀 ( + , ( 𝑥 ∈ V ↦ ( ( 𝐺 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑥 ) ) ) ) ‘ 𝑁 ) ) |
18 |
3
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
19 |
2
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
20 |
11
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝑥 ∈ V ↦ ( ( 𝐺 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑥 ) ) ) ‘ 𝑘 ) = ( ( 𝐺 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑘 ) ) ) |
21 |
1 18 19 20
|
sersub |
⊢ ( 𝜑 → ( seq 𝑀 ( + , ( 𝑥 ∈ V ↦ ( ( 𝐺 ‘ 𝑥 ) − ( 𝐹 ‘ 𝑥 ) ) ) ) ‘ 𝑁 ) = ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) |
22 |
17 21
|
breqtrd |
⊢ ( 𝜑 → 0 ≤ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ) |
23 |
|
readdcl |
⊢ ( ( 𝑘 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑘 + 𝑥 ) ∈ ℝ ) |
24 |
23
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℝ ∧ 𝑥 ∈ ℝ ) ) → ( 𝑘 + 𝑥 ) ∈ ℝ ) |
25 |
1 3 24
|
seqcl |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ∈ ℝ ) |
26 |
1 2 24
|
seqcl |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ∈ ℝ ) |
27 |
25 26
|
subge0d |
⊢ ( 𝜑 → ( 0 ≤ ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) − ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) ↔ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ≤ ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) ) |
28 |
22 27
|
mpbid |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ≤ ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) |