Step |
Hyp |
Ref |
Expression |
1 |
|
sersub.1 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
2 |
|
sersub.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
3 |
|
sersub.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
4 |
|
sersub.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐻 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑘 ) ) ) |
5 |
|
addcl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 + 𝑦 ) ∈ ℂ ) |
6 |
5
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → ( 𝑥 + 𝑦 ) ∈ ℂ ) |
7 |
|
subcl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 − 𝑦 ) ∈ ℂ ) |
8 |
7
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → ( 𝑥 − 𝑦 ) ∈ ℂ ) |
9 |
|
addsub4 |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ( 𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ ) ) → ( ( 𝑥 + 𝑦 ) − ( 𝑧 + 𝑤 ) ) = ( ( 𝑥 − 𝑧 ) + ( 𝑦 − 𝑤 ) ) ) |
10 |
9
|
eqcomd |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ( 𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ ) ) → ( ( 𝑥 − 𝑧 ) + ( 𝑦 − 𝑤 ) ) = ( ( 𝑥 + 𝑦 ) − ( 𝑧 + 𝑤 ) ) ) |
11 |
10
|
adantl |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ ( 𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ ) ) ) → ( ( 𝑥 − 𝑧 ) + ( 𝑦 − 𝑤 ) ) = ( ( 𝑥 + 𝑦 ) − ( 𝑧 + 𝑤 ) ) ) |
12 |
6 8 11 1 2 3 4
|
seqcaopr2 |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑁 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) − ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) ) |