| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
⊢ ( ( 𝑅 ⊆ 𝑆 ∧ 𝑦 ∈ 𝐴 ) → 𝑅 ⊆ 𝑆 ) |
| 2 |
1
|
ssbrd |
⊢ ( ( 𝑅 ⊆ 𝑆 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 𝑅 𝑥 → 𝑦 𝑆 𝑥 ) ) |
| 3 |
2
|
ss2rabdv |
⊢ ( 𝑅 ⊆ 𝑆 → { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } ⊆ { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑆 𝑥 } ) |
| 4 |
|
ssexg |
⊢ ( ( { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } ⊆ { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑆 𝑥 } ∧ { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑆 𝑥 } ∈ V ) → { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } ∈ V ) |
| 5 |
4
|
ex |
⊢ ( { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } ⊆ { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑆 𝑥 } → ( { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑆 𝑥 } ∈ V → { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } ∈ V ) ) |
| 6 |
3 5
|
syl |
⊢ ( 𝑅 ⊆ 𝑆 → ( { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑆 𝑥 } ∈ V → { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } ∈ V ) ) |
| 7 |
6
|
ralimdv |
⊢ ( 𝑅 ⊆ 𝑆 → ( ∀ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑆 𝑥 } ∈ V → ∀ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } ∈ V ) ) |
| 8 |
|
df-se |
⊢ ( 𝑆 Se 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑆 𝑥 } ∈ V ) |
| 9 |
|
df-se |
⊢ ( 𝑅 Se 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } ∈ V ) |
| 10 |
7 8 9
|
3imtr4g |
⊢ ( 𝑅 ⊆ 𝑆 → ( 𝑆 Se 𝐴 → 𝑅 Se 𝐴 ) ) |