Metamath Proof Explorer


Theorem sess1

Description: Subset theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015)

Ref Expression
Assertion sess1 ( 𝑅𝑆 → ( 𝑆 Se 𝐴𝑅 Se 𝐴 ) )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝑅𝑆𝑦𝐴 ) → 𝑅𝑆 )
2 1 ssbrd ( ( 𝑅𝑆𝑦𝐴 ) → ( 𝑦 𝑅 𝑥𝑦 𝑆 𝑥 ) )
3 2 ss2rabdv ( 𝑅𝑆 → { 𝑦𝐴𝑦 𝑅 𝑥 } ⊆ { 𝑦𝐴𝑦 𝑆 𝑥 } )
4 ssexg ( ( { 𝑦𝐴𝑦 𝑅 𝑥 } ⊆ { 𝑦𝐴𝑦 𝑆 𝑥 } ∧ { 𝑦𝐴𝑦 𝑆 𝑥 } ∈ V ) → { 𝑦𝐴𝑦 𝑅 𝑥 } ∈ V )
5 4 ex ( { 𝑦𝐴𝑦 𝑅 𝑥 } ⊆ { 𝑦𝐴𝑦 𝑆 𝑥 } → ( { 𝑦𝐴𝑦 𝑆 𝑥 } ∈ V → { 𝑦𝐴𝑦 𝑅 𝑥 } ∈ V ) )
6 3 5 syl ( 𝑅𝑆 → ( { 𝑦𝐴𝑦 𝑆 𝑥 } ∈ V → { 𝑦𝐴𝑦 𝑅 𝑥 } ∈ V ) )
7 6 ralimdv ( 𝑅𝑆 → ( ∀ 𝑥𝐴 { 𝑦𝐴𝑦 𝑆 𝑥 } ∈ V → ∀ 𝑥𝐴 { 𝑦𝐴𝑦 𝑅 𝑥 } ∈ V ) )
8 df-se ( 𝑆 Se 𝐴 ↔ ∀ 𝑥𝐴 { 𝑦𝐴𝑦 𝑆 𝑥 } ∈ V )
9 df-se ( 𝑅 Se 𝐴 ↔ ∀ 𝑥𝐴 { 𝑦𝐴𝑦 𝑅 𝑥 } ∈ V )
10 7 8 9 3imtr4g ( 𝑅𝑆 → ( 𝑆 Se 𝐴𝑅 Se 𝐴 ) )