| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssralv | ⊢ ( 𝐴  ⊆  𝐵  →  ( ∀ 𝑥  ∈  𝐵 { 𝑦  ∈  𝐵  ∣  𝑦 𝑅 𝑥 }  ∈  V  →  ∀ 𝑥  ∈  𝐴 { 𝑦  ∈  𝐵  ∣  𝑦 𝑅 𝑥 }  ∈  V ) ) | 
						
							| 2 |  | rabss2 | ⊢ ( 𝐴  ⊆  𝐵  →  { 𝑦  ∈  𝐴  ∣  𝑦 𝑅 𝑥 }  ⊆  { 𝑦  ∈  𝐵  ∣  𝑦 𝑅 𝑥 } ) | 
						
							| 3 |  | ssexg | ⊢ ( ( { 𝑦  ∈  𝐴  ∣  𝑦 𝑅 𝑥 }  ⊆  { 𝑦  ∈  𝐵  ∣  𝑦 𝑅 𝑥 }  ∧  { 𝑦  ∈  𝐵  ∣  𝑦 𝑅 𝑥 }  ∈  V )  →  { 𝑦  ∈  𝐴  ∣  𝑦 𝑅 𝑥 }  ∈  V ) | 
						
							| 4 | 3 | ex | ⊢ ( { 𝑦  ∈  𝐴  ∣  𝑦 𝑅 𝑥 }  ⊆  { 𝑦  ∈  𝐵  ∣  𝑦 𝑅 𝑥 }  →  ( { 𝑦  ∈  𝐵  ∣  𝑦 𝑅 𝑥 }  ∈  V  →  { 𝑦  ∈  𝐴  ∣  𝑦 𝑅 𝑥 }  ∈  V ) ) | 
						
							| 5 | 2 4 | syl | ⊢ ( 𝐴  ⊆  𝐵  →  ( { 𝑦  ∈  𝐵  ∣  𝑦 𝑅 𝑥 }  ∈  V  →  { 𝑦  ∈  𝐴  ∣  𝑦 𝑅 𝑥 }  ∈  V ) ) | 
						
							| 6 | 5 | ralimdv | ⊢ ( 𝐴  ⊆  𝐵  →  ( ∀ 𝑥  ∈  𝐴 { 𝑦  ∈  𝐵  ∣  𝑦 𝑅 𝑥 }  ∈  V  →  ∀ 𝑥  ∈  𝐴 { 𝑦  ∈  𝐴  ∣  𝑦 𝑅 𝑥 }  ∈  V ) ) | 
						
							| 7 | 1 6 | syld | ⊢ ( 𝐴  ⊆  𝐵  →  ( ∀ 𝑥  ∈  𝐵 { 𝑦  ∈  𝐵  ∣  𝑦 𝑅 𝑥 }  ∈  V  →  ∀ 𝑥  ∈  𝐴 { 𝑦  ∈  𝐴  ∣  𝑦 𝑅 𝑥 }  ∈  V ) ) | 
						
							| 8 |  | df-se | ⊢ ( 𝑅  Se  𝐵  ↔  ∀ 𝑥  ∈  𝐵 { 𝑦  ∈  𝐵  ∣  𝑦 𝑅 𝑥 }  ∈  V ) | 
						
							| 9 |  | df-se | ⊢ ( 𝑅  Se  𝐴  ↔  ∀ 𝑥  ∈  𝐴 { 𝑦  ∈  𝐴  ∣  𝑦 𝑅 𝑥 }  ∈  V ) | 
						
							| 10 | 7 8 9 | 3imtr4g | ⊢ ( 𝐴  ⊆  𝐵  →  ( 𝑅  Se  𝐵  →  𝑅  Se  𝐴 ) ) |