| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssralv |
⊢ ( 𝐴 ⊆ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 { 𝑦 ∈ 𝐵 ∣ 𝑦 𝑅 𝑥 } ∈ V → ∀ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝑦 𝑅 𝑥 } ∈ V ) ) |
| 2 |
|
rabss2 |
⊢ ( 𝐴 ⊆ 𝐵 → { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } ⊆ { 𝑦 ∈ 𝐵 ∣ 𝑦 𝑅 𝑥 } ) |
| 3 |
|
ssexg |
⊢ ( ( { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } ⊆ { 𝑦 ∈ 𝐵 ∣ 𝑦 𝑅 𝑥 } ∧ { 𝑦 ∈ 𝐵 ∣ 𝑦 𝑅 𝑥 } ∈ V ) → { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } ∈ V ) |
| 4 |
3
|
ex |
⊢ ( { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } ⊆ { 𝑦 ∈ 𝐵 ∣ 𝑦 𝑅 𝑥 } → ( { 𝑦 ∈ 𝐵 ∣ 𝑦 𝑅 𝑥 } ∈ V → { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } ∈ V ) ) |
| 5 |
2 4
|
syl |
⊢ ( 𝐴 ⊆ 𝐵 → ( { 𝑦 ∈ 𝐵 ∣ 𝑦 𝑅 𝑥 } ∈ V → { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } ∈ V ) ) |
| 6 |
5
|
ralimdv |
⊢ ( 𝐴 ⊆ 𝐵 → ( ∀ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐵 ∣ 𝑦 𝑅 𝑥 } ∈ V → ∀ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } ∈ V ) ) |
| 7 |
1 6
|
syld |
⊢ ( 𝐴 ⊆ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 { 𝑦 ∈ 𝐵 ∣ 𝑦 𝑅 𝑥 } ∈ V → ∀ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } ∈ V ) ) |
| 8 |
|
df-se |
⊢ ( 𝑅 Se 𝐵 ↔ ∀ 𝑥 ∈ 𝐵 { 𝑦 ∈ 𝐵 ∣ 𝑦 𝑅 𝑥 } ∈ V ) |
| 9 |
|
df-se |
⊢ ( 𝑅 Se 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } ∈ V ) |
| 10 |
7 8 9
|
3imtr4g |
⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑅 Se 𝐵 → 𝑅 Se 𝐴 ) ) |