Metamath Proof Explorer


Theorem sess2

Description: Subset theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015)

Ref Expression
Assertion sess2 ( 𝐴𝐵 → ( 𝑅 Se 𝐵𝑅 Se 𝐴 ) )

Proof

Step Hyp Ref Expression
1 ssralv ( 𝐴𝐵 → ( ∀ 𝑥𝐵 { 𝑦𝐵𝑦 𝑅 𝑥 } ∈ V → ∀ 𝑥𝐴 { 𝑦𝐵𝑦 𝑅 𝑥 } ∈ V ) )
2 rabss2 ( 𝐴𝐵 → { 𝑦𝐴𝑦 𝑅 𝑥 } ⊆ { 𝑦𝐵𝑦 𝑅 𝑥 } )
3 ssexg ( ( { 𝑦𝐴𝑦 𝑅 𝑥 } ⊆ { 𝑦𝐵𝑦 𝑅 𝑥 } ∧ { 𝑦𝐵𝑦 𝑅 𝑥 } ∈ V ) → { 𝑦𝐴𝑦 𝑅 𝑥 } ∈ V )
4 3 ex ( { 𝑦𝐴𝑦 𝑅 𝑥 } ⊆ { 𝑦𝐵𝑦 𝑅 𝑥 } → ( { 𝑦𝐵𝑦 𝑅 𝑥 } ∈ V → { 𝑦𝐴𝑦 𝑅 𝑥 } ∈ V ) )
5 2 4 syl ( 𝐴𝐵 → ( { 𝑦𝐵𝑦 𝑅 𝑥 } ∈ V → { 𝑦𝐴𝑦 𝑅 𝑥 } ∈ V ) )
6 5 ralimdv ( 𝐴𝐵 → ( ∀ 𝑥𝐴 { 𝑦𝐵𝑦 𝑅 𝑥 } ∈ V → ∀ 𝑥𝐴 { 𝑦𝐴𝑦 𝑅 𝑥 } ∈ V ) )
7 1 6 syld ( 𝐴𝐵 → ( ∀ 𝑥𝐵 { 𝑦𝐵𝑦 𝑅 𝑥 } ∈ V → ∀ 𝑥𝐴 { 𝑦𝐴𝑦 𝑅 𝑥 } ∈ V ) )
8 df-se ( 𝑅 Se 𝐵 ↔ ∀ 𝑥𝐵 { 𝑦𝐵𝑦 𝑅 𝑥 } ∈ V )
9 df-se ( 𝑅 Se 𝐴 ↔ ∀ 𝑥𝐴 { 𝑦𝐴𝑦 𝑅 𝑥 } ∈ V )
10 7 8 9 3imtr4g ( 𝐴𝐵 → ( 𝑅 Se 𝐵𝑅 Se 𝐴 ) )