Description: (/) and 1o are distinct objects in ( SetCat2o ) . This combined with setc2ohom demonstrates that the category does not have pairwise disjoint hom-sets. See also df-cat and cat1 . (Contributed by Zhi Wang, 24-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | setc2ohom.c | ⊢ 𝐶 = ( SetCat ‘ 2o ) | |
setc2obas.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
Assertion | setc2obas | ⊢ ( ∅ ∈ 𝐵 ∧ 1o ∈ 𝐵 ∧ 1o ≠ ∅ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setc2ohom.c | ⊢ 𝐶 = ( SetCat ‘ 2o ) | |
2 | setc2obas.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
3 | 0ex | ⊢ ∅ ∈ V | |
4 | 3 | prid1 | ⊢ ∅ ∈ { ∅ , 1o } |
5 | 2oex | ⊢ 2o ∈ V | |
6 | 5 | a1i | ⊢ ( ⊤ → 2o ∈ V ) |
7 | 1 6 | setcbas | ⊢ ( ⊤ → 2o = ( Base ‘ 𝐶 ) ) |
8 | 7 | mptru | ⊢ 2o = ( Base ‘ 𝐶 ) |
9 | df2o3 | ⊢ 2o = { ∅ , 1o } | |
10 | 2 8 9 | 3eqtr2i | ⊢ 𝐵 = { ∅ , 1o } |
11 | 4 10 | eleqtrri | ⊢ ∅ ∈ 𝐵 |
12 | 1oex | ⊢ 1o ∈ V | |
13 | 12 | prid2 | ⊢ 1o ∈ { ∅ , 1o } |
14 | 13 10 | eleqtrri | ⊢ 1o ∈ 𝐵 |
15 | 1n0 | ⊢ 1o ≠ ∅ | |
16 | 11 14 15 | 3pm3.2i | ⊢ ( ∅ ∈ 𝐵 ∧ 1o ∈ 𝐵 ∧ 1o ≠ ∅ ) |