Metamath Proof Explorer


Theorem setc2othin

Description: The category ( SetCat2o ) is thin. A special case of setcthin . (Contributed by Zhi Wang, 20-Sep-2024)

Ref Expression
Assertion setc2othin ( SetCat ‘ 2o ) ∈ ThinCat

Proof

Step Hyp Ref Expression
1 eqidd ( ⊤ → ( SetCat ‘ 2o ) = ( SetCat ‘ 2o ) )
2 2oex 2o ∈ V
3 2 a1i ( ⊤ → 2o ∈ V )
4 elpri ( 𝑥 ∈ { ∅ , { ∅ } } → ( 𝑥 = ∅ ∨ 𝑥 = { ∅ } ) )
5 0ex ∅ ∈ V
6 sneq ( 𝑦 = ∅ → { 𝑦 } = { ∅ } )
7 6 eqeq2d ( 𝑦 = ∅ → ( 𝑥 = { 𝑦 } ↔ 𝑥 = { ∅ } ) )
8 5 7 spcev ( 𝑥 = { ∅ } → ∃ 𝑦 𝑥 = { 𝑦 } )
9 8 orim2i ( ( 𝑥 = ∅ ∨ 𝑥 = { ∅ } ) → ( 𝑥 = ∅ ∨ ∃ 𝑦 𝑥 = { 𝑦 } ) )
10 mo0sn ( ∃* 𝑧 𝑧𝑥 ↔ ( 𝑥 = ∅ ∨ ∃ 𝑦 𝑥 = { 𝑦 } ) )
11 10 biimpri ( ( 𝑥 = ∅ ∨ ∃ 𝑦 𝑥 = { 𝑦 } ) → ∃* 𝑧 𝑧𝑥 )
12 4 9 11 3syl ( 𝑥 ∈ { ∅ , { ∅ } } → ∃* 𝑧 𝑧𝑥 )
13 df2o2 2o = { ∅ , { ∅ } }
14 12 13 eleq2s ( 𝑥 ∈ 2o → ∃* 𝑧 𝑧𝑥 )
15 14 rgen 𝑥 ∈ 2o ∃* 𝑧 𝑧𝑥
16 15 a1i ( ⊤ → ∀ 𝑥 ∈ 2o ∃* 𝑧 𝑧𝑥 )
17 1 3 16 setcthin ( ⊤ → ( SetCat ‘ 2o ) ∈ ThinCat )
18 17 mptru ( SetCat ‘ 2o ) ∈ ThinCat