Step |
Hyp |
Ref |
Expression |
1 |
|
eqidd |
⊢ ( ⊤ → ( SetCat ‘ 2o ) = ( SetCat ‘ 2o ) ) |
2 |
|
2oex |
⊢ 2o ∈ V |
3 |
2
|
a1i |
⊢ ( ⊤ → 2o ∈ V ) |
4 |
|
elpri |
⊢ ( 𝑥 ∈ { ∅ , { ∅ } } → ( 𝑥 = ∅ ∨ 𝑥 = { ∅ } ) ) |
5 |
|
0ex |
⊢ ∅ ∈ V |
6 |
|
sneq |
⊢ ( 𝑦 = ∅ → { 𝑦 } = { ∅ } ) |
7 |
6
|
eqeq2d |
⊢ ( 𝑦 = ∅ → ( 𝑥 = { 𝑦 } ↔ 𝑥 = { ∅ } ) ) |
8 |
5 7
|
spcev |
⊢ ( 𝑥 = { ∅ } → ∃ 𝑦 𝑥 = { 𝑦 } ) |
9 |
8
|
orim2i |
⊢ ( ( 𝑥 = ∅ ∨ 𝑥 = { ∅ } ) → ( 𝑥 = ∅ ∨ ∃ 𝑦 𝑥 = { 𝑦 } ) ) |
10 |
|
mo0sn |
⊢ ( ∃* 𝑧 𝑧 ∈ 𝑥 ↔ ( 𝑥 = ∅ ∨ ∃ 𝑦 𝑥 = { 𝑦 } ) ) |
11 |
10
|
biimpri |
⊢ ( ( 𝑥 = ∅ ∨ ∃ 𝑦 𝑥 = { 𝑦 } ) → ∃* 𝑧 𝑧 ∈ 𝑥 ) |
12 |
4 9 11
|
3syl |
⊢ ( 𝑥 ∈ { ∅ , { ∅ } } → ∃* 𝑧 𝑧 ∈ 𝑥 ) |
13 |
|
df2o2 |
⊢ 2o = { ∅ , { ∅ } } |
14 |
12 13
|
eleq2s |
⊢ ( 𝑥 ∈ 2o → ∃* 𝑧 𝑧 ∈ 𝑥 ) |
15 |
14
|
rgen |
⊢ ∀ 𝑥 ∈ 2o ∃* 𝑧 𝑧 ∈ 𝑥 |
16 |
15
|
a1i |
⊢ ( ⊤ → ∀ 𝑥 ∈ 2o ∃* 𝑧 𝑧 ∈ 𝑥 ) |
17 |
1 3 16
|
setcthin |
⊢ ( ⊤ → ( SetCat ‘ 2o ) ∈ ThinCat ) |
18 |
17
|
mptru |
⊢ ( SetCat ‘ 2o ) ∈ ThinCat |