Metamath Proof Explorer


Theorem setccat

Description: The category of sets is a category. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypothesis setccat.c 𝐶 = ( SetCat ‘ 𝑈 )
Assertion setccat ( 𝑈𝑉𝐶 ∈ Cat )

Proof

Step Hyp Ref Expression
1 setccat.c 𝐶 = ( SetCat ‘ 𝑈 )
2 1 setccatid ( 𝑈𝑉 → ( 𝐶 ∈ Cat ∧ ( Id ‘ 𝐶 ) = ( 𝑥𝑈 ↦ ( I ↾ 𝑥 ) ) ) )
3 2 simpld ( 𝑈𝑉𝐶 ∈ Cat )