Step |
Hyp |
Ref |
Expression |
1 |
|
setcmon.c |
⊢ 𝐶 = ( SetCat ‘ 𝑈 ) |
2 |
|
setcmon.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
3 |
|
setcmon.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) |
4 |
|
setcmon.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑈 ) |
5 |
|
setcepi.h |
⊢ 𝐸 = ( Epi ‘ 𝐶 ) |
6 |
|
setcepi.2 |
⊢ ( 𝜑 → 2o ∈ 𝑈 ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
8 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
9 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
10 |
1
|
setccat |
⊢ ( 𝑈 ∈ 𝑉 → 𝐶 ∈ Cat ) |
11 |
2 10
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
12 |
1 2
|
setcbas |
⊢ ( 𝜑 → 𝑈 = ( Base ‘ 𝐶 ) ) |
13 |
3 12
|
eleqtrd |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
14 |
4 12
|
eleqtrd |
⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝐶 ) ) |
15 |
7 8 9 5 11 13 14
|
epihom |
⊢ ( 𝜑 → ( 𝑋 𝐸 𝑌 ) ⊆ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
16 |
15
|
sselda |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐸 𝑌 ) ) → 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
17 |
1 2 8 3 4
|
elsetchom |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ↔ 𝐹 : 𝑋 ⟶ 𝑌 ) ) |
18 |
17
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
19 |
16 18
|
syldan |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐸 𝑌 ) ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
20 |
19
|
frnd |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐸 𝑌 ) ) → ran 𝐹 ⊆ 𝑌 ) |
21 |
19
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐸 𝑌 ) ) → 𝐹 Fn 𝑋 ) |
22 |
|
fnfvelrn |
⊢ ( ( 𝐹 Fn 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) ∈ ran 𝐹 ) |
23 |
21 22
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐸 𝑌 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) ∈ ran 𝐹 ) |
24 |
23
|
iftrued |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐸 𝑌 ) ) ∧ 𝑥 ∈ 𝑋 ) → if ( ( 𝐹 ‘ 𝑥 ) ∈ ran 𝐹 , 1o , ∅ ) = 1o ) |
25 |
24
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐸 𝑌 ) ) → ( 𝑥 ∈ 𝑋 ↦ if ( ( 𝐹 ‘ 𝑥 ) ∈ ran 𝐹 , 1o , ∅ ) ) = ( 𝑥 ∈ 𝑋 ↦ 1o ) ) |
26 |
19
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐸 𝑌 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑌 ) |
27 |
19
|
feqmptd |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐸 𝑌 ) ) → 𝐹 = ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
28 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐸 𝑌 ) ) → ( 𝑎 ∈ 𝑌 ↦ if ( 𝑎 ∈ ran 𝐹 , 1o , ∅ ) ) = ( 𝑎 ∈ 𝑌 ↦ if ( 𝑎 ∈ ran 𝐹 , 1o , ∅ ) ) ) |
29 |
|
eleq1 |
⊢ ( 𝑎 = ( 𝐹 ‘ 𝑥 ) → ( 𝑎 ∈ ran 𝐹 ↔ ( 𝐹 ‘ 𝑥 ) ∈ ran 𝐹 ) ) |
30 |
29
|
ifbid |
⊢ ( 𝑎 = ( 𝐹 ‘ 𝑥 ) → if ( 𝑎 ∈ ran 𝐹 , 1o , ∅ ) = if ( ( 𝐹 ‘ 𝑥 ) ∈ ran 𝐹 , 1o , ∅ ) ) |
31 |
26 27 28 30
|
fmptco |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐸 𝑌 ) ) → ( ( 𝑎 ∈ 𝑌 ↦ if ( 𝑎 ∈ ran 𝐹 , 1o , ∅ ) ) ∘ 𝐹 ) = ( 𝑥 ∈ 𝑋 ↦ if ( ( 𝐹 ‘ 𝑥 ) ∈ ran 𝐹 , 1o , ∅ ) ) ) |
32 |
|
fconstmpt |
⊢ ( 𝑌 × { 1o } ) = ( 𝑎 ∈ 𝑌 ↦ 1o ) |
33 |
32
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐸 𝑌 ) ) → ( 𝑌 × { 1o } ) = ( 𝑎 ∈ 𝑌 ↦ 1o ) ) |
34 |
|
eqidd |
⊢ ( 𝑎 = ( 𝐹 ‘ 𝑥 ) → 1o = 1o ) |
35 |
26 27 33 34
|
fmptco |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐸 𝑌 ) ) → ( ( 𝑌 × { 1o } ) ∘ 𝐹 ) = ( 𝑥 ∈ 𝑋 ↦ 1o ) ) |
36 |
25 31 35
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐸 𝑌 ) ) → ( ( 𝑎 ∈ 𝑌 ↦ if ( 𝑎 ∈ ran 𝐹 , 1o , ∅ ) ) ∘ 𝐹 ) = ( ( 𝑌 × { 1o } ) ∘ 𝐹 ) ) |
37 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐸 𝑌 ) ) → 𝑈 ∈ 𝑉 ) |
38 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐸 𝑌 ) ) → 𝑋 ∈ 𝑈 ) |
39 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐸 𝑌 ) ) → 𝑌 ∈ 𝑈 ) |
40 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐸 𝑌 ) ) → 2o ∈ 𝑈 ) |
41 |
|
eqid |
⊢ ( 𝑎 ∈ 𝑌 ↦ if ( 𝑎 ∈ ran 𝐹 , 1o , ∅ ) ) = ( 𝑎 ∈ 𝑌 ↦ if ( 𝑎 ∈ ran 𝐹 , 1o , ∅ ) ) |
42 |
|
1oex |
⊢ 1o ∈ V |
43 |
42
|
prid2 |
⊢ 1o ∈ { ∅ , 1o } |
44 |
|
df2o3 |
⊢ 2o = { ∅ , 1o } |
45 |
43 44
|
eleqtrri |
⊢ 1o ∈ 2o |
46 |
|
0ex |
⊢ ∅ ∈ V |
47 |
46
|
prid1 |
⊢ ∅ ∈ { ∅ , 1o } |
48 |
47 44
|
eleqtrri |
⊢ ∅ ∈ 2o |
49 |
45 48
|
ifcli |
⊢ if ( 𝑎 ∈ ran 𝐹 , 1o , ∅ ) ∈ 2o |
50 |
49
|
a1i |
⊢ ( 𝑎 ∈ 𝑌 → if ( 𝑎 ∈ ran 𝐹 , 1o , ∅ ) ∈ 2o ) |
51 |
41 50
|
fmpti |
⊢ ( 𝑎 ∈ 𝑌 ↦ if ( 𝑎 ∈ ran 𝐹 , 1o , ∅ ) ) : 𝑌 ⟶ 2o |
52 |
51
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐸 𝑌 ) ) → ( 𝑎 ∈ 𝑌 ↦ if ( 𝑎 ∈ ran 𝐹 , 1o , ∅ ) ) : 𝑌 ⟶ 2o ) |
53 |
1 37 9 38 39 40 19 52
|
setcco |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐸 𝑌 ) ) → ( ( 𝑎 ∈ 𝑌 ↦ if ( 𝑎 ∈ ran 𝐹 , 1o , ∅ ) ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 2o ) 𝐹 ) = ( ( 𝑎 ∈ 𝑌 ↦ if ( 𝑎 ∈ ran 𝐹 , 1o , ∅ ) ) ∘ 𝐹 ) ) |
54 |
|
fconst6g |
⊢ ( 1o ∈ 2o → ( 𝑌 × { 1o } ) : 𝑌 ⟶ 2o ) |
55 |
45 54
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐸 𝑌 ) ) → ( 𝑌 × { 1o } ) : 𝑌 ⟶ 2o ) |
56 |
1 37 9 38 39 40 19 55
|
setcco |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐸 𝑌 ) ) → ( ( 𝑌 × { 1o } ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 2o ) 𝐹 ) = ( ( 𝑌 × { 1o } ) ∘ 𝐹 ) ) |
57 |
36 53 56
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐸 𝑌 ) ) → ( ( 𝑎 ∈ 𝑌 ↦ if ( 𝑎 ∈ ran 𝐹 , 1o , ∅ ) ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 2o ) 𝐹 ) = ( ( 𝑌 × { 1o } ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 2o ) 𝐹 ) ) |
58 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐸 𝑌 ) ) → 𝐶 ∈ Cat ) |
59 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐸 𝑌 ) ) → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
60 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐸 𝑌 ) ) → 𝑌 ∈ ( Base ‘ 𝐶 ) ) |
61 |
6 12
|
eleqtrd |
⊢ ( 𝜑 → 2o ∈ ( Base ‘ 𝐶 ) ) |
62 |
61
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐸 𝑌 ) ) → 2o ∈ ( Base ‘ 𝐶 ) ) |
63 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐸 𝑌 ) ) → 𝐹 ∈ ( 𝑋 𝐸 𝑌 ) ) |
64 |
1 37 8 39 40
|
elsetchom |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐸 𝑌 ) ) → ( ( 𝑎 ∈ 𝑌 ↦ if ( 𝑎 ∈ ran 𝐹 , 1o , ∅ ) ) ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 2o ) ↔ ( 𝑎 ∈ 𝑌 ↦ if ( 𝑎 ∈ ran 𝐹 , 1o , ∅ ) ) : 𝑌 ⟶ 2o ) ) |
65 |
52 64
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐸 𝑌 ) ) → ( 𝑎 ∈ 𝑌 ↦ if ( 𝑎 ∈ ran 𝐹 , 1o , ∅ ) ) ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 2o ) ) |
66 |
1 37 8 39 40
|
elsetchom |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐸 𝑌 ) ) → ( ( 𝑌 × { 1o } ) ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 2o ) ↔ ( 𝑌 × { 1o } ) : 𝑌 ⟶ 2o ) ) |
67 |
55 66
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐸 𝑌 ) ) → ( 𝑌 × { 1o } ) ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 2o ) ) |
68 |
7 8 9 5 58 59 60 62 63 65 67
|
epii |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐸 𝑌 ) ) → ( ( ( 𝑎 ∈ 𝑌 ↦ if ( 𝑎 ∈ ran 𝐹 , 1o , ∅ ) ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 2o ) 𝐹 ) = ( ( 𝑌 × { 1o } ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 2o ) 𝐹 ) ↔ ( 𝑎 ∈ 𝑌 ↦ if ( 𝑎 ∈ ran 𝐹 , 1o , ∅ ) ) = ( 𝑌 × { 1o } ) ) ) |
69 |
57 68
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐸 𝑌 ) ) → ( 𝑎 ∈ 𝑌 ↦ if ( 𝑎 ∈ ran 𝐹 , 1o , ∅ ) ) = ( 𝑌 × { 1o } ) ) |
70 |
69 32
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐸 𝑌 ) ) → ( 𝑎 ∈ 𝑌 ↦ if ( 𝑎 ∈ ran 𝐹 , 1o , ∅ ) ) = ( 𝑎 ∈ 𝑌 ↦ 1o ) ) |
71 |
49
|
rgenw |
⊢ ∀ 𝑎 ∈ 𝑌 if ( 𝑎 ∈ ran 𝐹 , 1o , ∅ ) ∈ 2o |
72 |
|
mpteqb |
⊢ ( ∀ 𝑎 ∈ 𝑌 if ( 𝑎 ∈ ran 𝐹 , 1o , ∅ ) ∈ 2o → ( ( 𝑎 ∈ 𝑌 ↦ if ( 𝑎 ∈ ran 𝐹 , 1o , ∅ ) ) = ( 𝑎 ∈ 𝑌 ↦ 1o ) ↔ ∀ 𝑎 ∈ 𝑌 if ( 𝑎 ∈ ran 𝐹 , 1o , ∅ ) = 1o ) ) |
73 |
71 72
|
ax-mp |
⊢ ( ( 𝑎 ∈ 𝑌 ↦ if ( 𝑎 ∈ ran 𝐹 , 1o , ∅ ) ) = ( 𝑎 ∈ 𝑌 ↦ 1o ) ↔ ∀ 𝑎 ∈ 𝑌 if ( 𝑎 ∈ ran 𝐹 , 1o , ∅ ) = 1o ) |
74 |
70 73
|
sylib |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐸 𝑌 ) ) → ∀ 𝑎 ∈ 𝑌 if ( 𝑎 ∈ ran 𝐹 , 1o , ∅ ) = 1o ) |
75 |
|
1n0 |
⊢ 1o ≠ ∅ |
76 |
75
|
nesymi |
⊢ ¬ ∅ = 1o |
77 |
|
iffalse |
⊢ ( ¬ 𝑎 ∈ ran 𝐹 → if ( 𝑎 ∈ ran 𝐹 , 1o , ∅ ) = ∅ ) |
78 |
77
|
eqeq1d |
⊢ ( ¬ 𝑎 ∈ ran 𝐹 → ( if ( 𝑎 ∈ ran 𝐹 , 1o , ∅ ) = 1o ↔ ∅ = 1o ) ) |
79 |
76 78
|
mtbiri |
⊢ ( ¬ 𝑎 ∈ ran 𝐹 → ¬ if ( 𝑎 ∈ ran 𝐹 , 1o , ∅ ) = 1o ) |
80 |
79
|
con4i |
⊢ ( if ( 𝑎 ∈ ran 𝐹 , 1o , ∅ ) = 1o → 𝑎 ∈ ran 𝐹 ) |
81 |
80
|
ralimi |
⊢ ( ∀ 𝑎 ∈ 𝑌 if ( 𝑎 ∈ ran 𝐹 , 1o , ∅ ) = 1o → ∀ 𝑎 ∈ 𝑌 𝑎 ∈ ran 𝐹 ) |
82 |
74 81
|
syl |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐸 𝑌 ) ) → ∀ 𝑎 ∈ 𝑌 𝑎 ∈ ran 𝐹 ) |
83 |
|
dfss3 |
⊢ ( 𝑌 ⊆ ran 𝐹 ↔ ∀ 𝑎 ∈ 𝑌 𝑎 ∈ ran 𝐹 ) |
84 |
82 83
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐸 𝑌 ) ) → 𝑌 ⊆ ran 𝐹 ) |
85 |
20 84
|
eqssd |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐸 𝑌 ) ) → ran 𝐹 = 𝑌 ) |
86 |
|
dffo2 |
⊢ ( 𝐹 : 𝑋 –onto→ 𝑌 ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ran 𝐹 = 𝑌 ) ) |
87 |
19 85 86
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝐸 𝑌 ) ) → 𝐹 : 𝑋 –onto→ 𝑌 ) |
88 |
|
fof |
⊢ ( 𝐹 : 𝑋 –onto→ 𝑌 → 𝐹 : 𝑋 ⟶ 𝑌 ) |
89 |
88
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
90 |
17
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
91 |
89 90
|
syldan |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
92 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → 𝑈 = ( Base ‘ 𝐶 ) ) |
93 |
92
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → ( 𝑧 ∈ 𝑈 ↔ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) |
94 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) ∧ ( 𝑧 ∈ 𝑈 ∧ ( 𝑔 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ℎ ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → 𝑈 ∈ 𝑉 ) |
95 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) ∧ ( 𝑧 ∈ 𝑈 ∧ ( 𝑔 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ℎ ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → 𝑋 ∈ 𝑈 ) |
96 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) ∧ ( 𝑧 ∈ 𝑈 ∧ ( 𝑔 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ℎ ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → 𝑌 ∈ 𝑈 ) |
97 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) ∧ ( 𝑧 ∈ 𝑈 ∧ ( 𝑔 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ℎ ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → 𝑧 ∈ 𝑈 ) |
98 |
89
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) ∧ ( 𝑧 ∈ 𝑈 ∧ ( 𝑔 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ℎ ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
99 |
|
simprrl |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) ∧ ( 𝑧 ∈ 𝑈 ∧ ( 𝑔 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ℎ ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → 𝑔 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑧 ) ) |
100 |
1 94 8 96 97
|
elsetchom |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) ∧ ( 𝑧 ∈ 𝑈 ∧ ( 𝑔 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ℎ ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( 𝑔 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑧 ) ↔ 𝑔 : 𝑌 ⟶ 𝑧 ) ) |
101 |
99 100
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) ∧ ( 𝑧 ∈ 𝑈 ∧ ( 𝑔 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ℎ ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → 𝑔 : 𝑌 ⟶ 𝑧 ) |
102 |
1 94 9 95 96 97 98 101
|
setcco |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) ∧ ( 𝑧 ∈ 𝑈 ∧ ( 𝑔 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ℎ ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝐹 ) = ( 𝑔 ∘ 𝐹 ) ) |
103 |
|
simprrr |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) ∧ ( 𝑧 ∈ 𝑈 ∧ ( 𝑔 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ℎ ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ℎ ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑧 ) ) |
104 |
1 94 8 96 97
|
elsetchom |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) ∧ ( 𝑧 ∈ 𝑈 ∧ ( 𝑔 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ℎ ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( ℎ ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑧 ) ↔ ℎ : 𝑌 ⟶ 𝑧 ) ) |
105 |
103 104
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) ∧ ( 𝑧 ∈ 𝑈 ∧ ( 𝑔 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ℎ ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ℎ : 𝑌 ⟶ 𝑧 ) |
106 |
1 94 9 95 96 97 98 105
|
setcco |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) ∧ ( 𝑧 ∈ 𝑈 ∧ ( 𝑔 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ℎ ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( ℎ ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝐹 ) = ( ℎ ∘ 𝐹 ) ) |
107 |
102 106
|
eqeq12d |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) ∧ ( 𝑧 ∈ 𝑈 ∧ ( 𝑔 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ℎ ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝐹 ) = ( ℎ ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝐹 ) ↔ ( 𝑔 ∘ 𝐹 ) = ( ℎ ∘ 𝐹 ) ) ) |
108 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) ∧ ( 𝑧 ∈ 𝑈 ∧ ( 𝑔 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ℎ ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → 𝐹 : 𝑋 –onto→ 𝑌 ) |
109 |
101
|
ffnd |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) ∧ ( 𝑧 ∈ 𝑈 ∧ ( 𝑔 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ℎ ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → 𝑔 Fn 𝑌 ) |
110 |
105
|
ffnd |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) ∧ ( 𝑧 ∈ 𝑈 ∧ ( 𝑔 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ℎ ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ℎ Fn 𝑌 ) |
111 |
|
cocan2 |
⊢ ( ( 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝑔 Fn 𝑌 ∧ ℎ Fn 𝑌 ) → ( ( 𝑔 ∘ 𝐹 ) = ( ℎ ∘ 𝐹 ) ↔ 𝑔 = ℎ ) ) |
112 |
108 109 110 111
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) ∧ ( 𝑧 ∈ 𝑈 ∧ ( 𝑔 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ℎ ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( ( 𝑔 ∘ 𝐹 ) = ( ℎ ∘ 𝐹 ) ↔ 𝑔 = ℎ ) ) |
113 |
112
|
biimpd |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) ∧ ( 𝑧 ∈ 𝑈 ∧ ( 𝑔 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ℎ ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( ( 𝑔 ∘ 𝐹 ) = ( ℎ ∘ 𝐹 ) → 𝑔 = ℎ ) ) |
114 |
107 113
|
sylbid |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) ∧ ( 𝑧 ∈ 𝑈 ∧ ( 𝑔 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ℎ ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝐹 ) = ( ℎ ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝐹 ) → 𝑔 = ℎ ) ) |
115 |
114
|
anassrs |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) ∧ 𝑧 ∈ 𝑈 ) ∧ ( 𝑔 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ℎ ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝐹 ) = ( ℎ ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝐹 ) → 𝑔 = ℎ ) ) |
116 |
115
|
ralrimivva |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) ∧ 𝑧 ∈ 𝑈 ) → ∀ 𝑔 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ ℎ ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝐹 ) = ( ℎ ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝐹 ) → 𝑔 = ℎ ) ) |
117 |
116
|
ex |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → ( 𝑧 ∈ 𝑈 → ∀ 𝑔 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ ℎ ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝐹 ) = ( ℎ ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝐹 ) → 𝑔 = ℎ ) ) ) |
118 |
93 117
|
sylbird |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → ( 𝑧 ∈ ( Base ‘ 𝐶 ) → ∀ 𝑔 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ ℎ ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝐹 ) = ( ℎ ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝐹 ) → 𝑔 = ℎ ) ) ) |
119 |
118
|
ralrimiv |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ ℎ ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝐹 ) = ( ℎ ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝐹 ) → 𝑔 = ℎ ) ) |
120 |
7 8 9 5 11 13 14
|
isepi2 |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐸 𝑌 ) ↔ ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ ℎ ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝐹 ) = ( ℎ ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝐹 ) → 𝑔 = ℎ ) ) ) ) |
121 |
120
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → ( 𝐹 ∈ ( 𝑋 𝐸 𝑌 ) ↔ ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑧 ) ∀ ℎ ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝐹 ) = ( ℎ ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝐹 ) → 𝑔 = ℎ ) ) ) ) |
122 |
91 119 121
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → 𝐹 ∈ ( 𝑋 𝐸 𝑌 ) ) |
123 |
87 122
|
impbida |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐸 𝑌 ) ↔ 𝐹 : 𝑋 –onto→ 𝑌 ) ) |