Metamath Proof Explorer


Theorem setchom

Description: Set of arrows of the category of sets (in a universe). (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses setcbas.c 𝐶 = ( SetCat ‘ 𝑈 )
setcbas.u ( 𝜑𝑈𝑉 )
setchomfval.h 𝐻 = ( Hom ‘ 𝐶 )
setchom.x ( 𝜑𝑋𝑈 )
setchom.y ( 𝜑𝑌𝑈 )
Assertion setchom ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝑌m 𝑋 ) )

Proof

Step Hyp Ref Expression
1 setcbas.c 𝐶 = ( SetCat ‘ 𝑈 )
2 setcbas.u ( 𝜑𝑈𝑉 )
3 setchomfval.h 𝐻 = ( Hom ‘ 𝐶 )
4 setchom.x ( 𝜑𝑋𝑈 )
5 setchom.y ( 𝜑𝑌𝑈 )
6 1 2 3 setchomfval ( 𝜑𝐻 = ( 𝑥𝑈 , 𝑦𝑈 ↦ ( 𝑦m 𝑥 ) ) )
7 simprr ( ( 𝜑 ∧ ( 𝑥 = 𝑋𝑦 = 𝑌 ) ) → 𝑦 = 𝑌 )
8 simprl ( ( 𝜑 ∧ ( 𝑥 = 𝑋𝑦 = 𝑌 ) ) → 𝑥 = 𝑋 )
9 7 8 oveq12d ( ( 𝜑 ∧ ( 𝑥 = 𝑋𝑦 = 𝑌 ) ) → ( 𝑦m 𝑥 ) = ( 𝑌m 𝑋 ) )
10 ovexd ( 𝜑 → ( 𝑌m 𝑋 ) ∈ V )
11 6 9 4 5 10 ovmpod ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝑌m 𝑋 ) )