Description: Set of arrows of the category of sets (in a universe). (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | setcbas.c | ⊢ 𝐶 = ( SetCat ‘ 𝑈 ) | |
| setcbas.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | ||
| setchomfval.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| setchom.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) | ||
| setchom.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑈 ) | ||
| Assertion | setchom | ⊢ ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝑌 ↑m 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setcbas.c | ⊢ 𝐶 = ( SetCat ‘ 𝑈 ) | |
| 2 | setcbas.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 3 | setchomfval.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 4 | setchom.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) | |
| 5 | setchom.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑈 ) | |
| 6 | 1 2 3 | setchomfval | ⊢ ( 𝜑 → 𝐻 = ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( 𝑦 ↑m 𝑥 ) ) ) |
| 7 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → 𝑦 = 𝑌 ) | |
| 8 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → 𝑥 = 𝑋 ) | |
| 9 | 7 8 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → ( 𝑦 ↑m 𝑥 ) = ( 𝑌 ↑m 𝑋 ) ) |
| 10 | ovexd | ⊢ ( 𝜑 → ( 𝑌 ↑m 𝑋 ) ∈ V ) | |
| 11 | 6 9 4 5 10 | ovmpod | ⊢ ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝑌 ↑m 𝑋 ) ) |