| Step |
Hyp |
Ref |
Expression |
| 1 |
|
setccat.c |
⊢ 𝐶 = ( SetCat ‘ 𝑈 ) |
| 2 |
|
setcid.o |
⊢ 1 = ( Id ‘ 𝐶 ) |
| 3 |
|
setcid.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
| 4 |
|
setcid.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) |
| 5 |
1
|
setccatid |
⊢ ( 𝑈 ∈ 𝑉 → ( 𝐶 ∈ Cat ∧ ( Id ‘ 𝐶 ) = ( 𝑥 ∈ 𝑈 ↦ ( I ↾ 𝑥 ) ) ) ) |
| 6 |
3 5
|
syl |
⊢ ( 𝜑 → ( 𝐶 ∈ Cat ∧ ( Id ‘ 𝐶 ) = ( 𝑥 ∈ 𝑈 ↦ ( I ↾ 𝑥 ) ) ) ) |
| 7 |
6
|
simprd |
⊢ ( 𝜑 → ( Id ‘ 𝐶 ) = ( 𝑥 ∈ 𝑈 ↦ ( I ↾ 𝑥 ) ) ) |
| 8 |
2 7
|
eqtrid |
⊢ ( 𝜑 → 1 = ( 𝑥 ∈ 𝑈 ↦ ( I ↾ 𝑥 ) ) ) |
| 9 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → 𝑥 = 𝑋 ) |
| 10 |
9
|
reseq2d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( I ↾ 𝑥 ) = ( I ↾ 𝑋 ) ) |
| 11 |
4
|
resiexd |
⊢ ( 𝜑 → ( I ↾ 𝑋 ) ∈ V ) |
| 12 |
8 10 4 11
|
fvmptd |
⊢ ( 𝜑 → ( 1 ‘ 𝑋 ) = ( I ↾ 𝑋 ) ) |