Metamath Proof Explorer


Theorem setcid

Description: The identity arrow in the category of sets is the identity function. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses setccat.c 𝐶 = ( SetCat ‘ 𝑈 )
setcid.o 1 = ( Id ‘ 𝐶 )
setcid.u ( 𝜑𝑈𝑉 )
setcid.x ( 𝜑𝑋𝑈 )
Assertion setcid ( 𝜑 → ( 1𝑋 ) = ( I ↾ 𝑋 ) )

Proof

Step Hyp Ref Expression
1 setccat.c 𝐶 = ( SetCat ‘ 𝑈 )
2 setcid.o 1 = ( Id ‘ 𝐶 )
3 setcid.u ( 𝜑𝑈𝑉 )
4 setcid.x ( 𝜑𝑋𝑈 )
5 1 setccatid ( 𝑈𝑉 → ( 𝐶 ∈ Cat ∧ ( Id ‘ 𝐶 ) = ( 𝑥𝑈 ↦ ( I ↾ 𝑥 ) ) ) )
6 3 5 syl ( 𝜑 → ( 𝐶 ∈ Cat ∧ ( Id ‘ 𝐶 ) = ( 𝑥𝑈 ↦ ( I ↾ 𝑥 ) ) ) )
7 6 simprd ( 𝜑 → ( Id ‘ 𝐶 ) = ( 𝑥𝑈 ↦ ( I ↾ 𝑥 ) ) )
8 2 7 eqtrid ( 𝜑1 = ( 𝑥𝑈 ↦ ( I ↾ 𝑥 ) ) )
9 simpr ( ( 𝜑𝑥 = 𝑋 ) → 𝑥 = 𝑋 )
10 9 reseq2d ( ( 𝜑𝑥 = 𝑋 ) → ( I ↾ 𝑥 ) = ( I ↾ 𝑋 ) )
11 4 resiexd ( 𝜑 → ( I ↾ 𝑋 ) ∈ V )
12 8 10 4 11 fvmptd ( 𝜑 → ( 1𝑋 ) = ( I ↾ 𝑋 ) )