Step |
Hyp |
Ref |
Expression |
1 |
|
setcmon.c |
⊢ 𝐶 = ( SetCat ‘ 𝑈 ) |
2 |
|
setcmon.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
3 |
|
setcmon.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) |
4 |
|
setcmon.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑈 ) |
5 |
|
setcinv.n |
⊢ 𝑁 = ( Inv ‘ 𝐶 ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
7 |
1
|
setccat |
⊢ ( 𝑈 ∈ 𝑉 → 𝐶 ∈ Cat ) |
8 |
2 7
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
9 |
1 2
|
setcbas |
⊢ ( 𝜑 → 𝑈 = ( Base ‘ 𝐶 ) ) |
10 |
3 9
|
eleqtrd |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
11 |
4 9
|
eleqtrd |
⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝐶 ) ) |
12 |
|
eqid |
⊢ ( Sect ‘ 𝐶 ) = ( Sect ‘ 𝐶 ) |
13 |
6 5 8 10 11 12
|
isinv |
⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ↔ ( 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝐺 ∧ 𝐺 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ) ) ) |
14 |
1 2 3 4 12
|
setcsect |
⊢ ( 𝜑 → ( 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝐺 ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝐺 : 𝑌 ⟶ 𝑋 ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝑋 ) ) ) ) |
15 |
|
df-3an |
⊢ ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝐺 : 𝑌 ⟶ 𝑋 ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝑋 ) ) ↔ ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝐺 : 𝑌 ⟶ 𝑋 ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝑋 ) ) ) |
16 |
14 15
|
bitrdi |
⊢ ( 𝜑 → ( 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝐺 ↔ ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝐺 : 𝑌 ⟶ 𝑋 ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝑋 ) ) ) ) |
17 |
1 2 4 3 12
|
setcsect |
⊢ ( 𝜑 → ( 𝐺 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ↔ ( 𝐺 : 𝑌 ⟶ 𝑋 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ 𝑌 ) ) ) ) |
18 |
|
3ancoma |
⊢ ( ( 𝐺 : 𝑌 ⟶ 𝑋 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ 𝑌 ) ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝐺 : 𝑌 ⟶ 𝑋 ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ 𝑌 ) ) ) |
19 |
|
df-3an |
⊢ ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝐺 : 𝑌 ⟶ 𝑋 ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ 𝑌 ) ) ↔ ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝐺 : 𝑌 ⟶ 𝑋 ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ 𝑌 ) ) ) |
20 |
18 19
|
bitri |
⊢ ( ( 𝐺 : 𝑌 ⟶ 𝑋 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ 𝑌 ) ) ↔ ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝐺 : 𝑌 ⟶ 𝑋 ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ 𝑌 ) ) ) |
21 |
17 20
|
bitrdi |
⊢ ( 𝜑 → ( 𝐺 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ↔ ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝐺 : 𝑌 ⟶ 𝑋 ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ 𝑌 ) ) ) ) |
22 |
16 21
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝐺 ∧ 𝐺 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ) ↔ ( ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝐺 : 𝑌 ⟶ 𝑋 ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝑋 ) ) ∧ ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝐺 : 𝑌 ⟶ 𝑋 ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ 𝑌 ) ) ) ) ) |
23 |
|
anandi |
⊢ ( ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝐺 : 𝑌 ⟶ 𝑋 ) ∧ ( ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝑋 ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ 𝑌 ) ) ) ↔ ( ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝐺 : 𝑌 ⟶ 𝑋 ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝑋 ) ) ∧ ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝐺 : 𝑌 ⟶ 𝑋 ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ 𝑌 ) ) ) ) |
24 |
22 23
|
bitr4di |
⊢ ( 𝜑 → ( ( 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝐺 ∧ 𝐺 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ) ↔ ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝐺 : 𝑌 ⟶ 𝑋 ) ∧ ( ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝑋 ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ 𝑌 ) ) ) ) ) |
25 |
|
fcof1o |
⊢ ( ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝐺 : 𝑌 ⟶ 𝑋 ) ∧ ( ( 𝐹 ∘ 𝐺 ) = ( I ↾ 𝑌 ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝑋 ) ) ) → ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ ◡ 𝐹 = 𝐺 ) ) |
26 |
|
eqcom |
⊢ ( ◡ 𝐹 = 𝐺 ↔ 𝐺 = ◡ 𝐹 ) |
27 |
26
|
anbi2i |
⊢ ( ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ ◡ 𝐹 = 𝐺 ) ↔ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ 𝐺 = ◡ 𝐹 ) ) |
28 |
25 27
|
sylib |
⊢ ( ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝐺 : 𝑌 ⟶ 𝑋 ) ∧ ( ( 𝐹 ∘ 𝐺 ) = ( I ↾ 𝑌 ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝑋 ) ) ) → ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ 𝐺 = ◡ 𝐹 ) ) |
29 |
28
|
ancom2s |
⊢ ( ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝐺 : 𝑌 ⟶ 𝑋 ) ∧ ( ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝑋 ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ 𝑌 ) ) ) → ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ 𝐺 = ◡ 𝐹 ) ) |
30 |
29
|
adantl |
⊢ ( ( 𝜑 ∧ ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝐺 : 𝑌 ⟶ 𝑋 ) ∧ ( ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝑋 ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ 𝑌 ) ) ) ) → ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ 𝐺 = ◡ 𝐹 ) ) |
31 |
|
f1of |
⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → 𝐹 : 𝑋 ⟶ 𝑌 ) |
32 |
31
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ 𝐺 = ◡ 𝐹 ) ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
33 |
|
f1ocnv |
⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → ◡ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) |
34 |
33
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ 𝐺 = ◡ 𝐹 ) ) → ◡ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) |
35 |
|
f1oeq1 |
⊢ ( 𝐺 = ◡ 𝐹 → ( 𝐺 : 𝑌 –1-1-onto→ 𝑋 ↔ ◡ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) ) |
36 |
35
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ 𝐺 = ◡ 𝐹 ) ) → ( 𝐺 : 𝑌 –1-1-onto→ 𝑋 ↔ ◡ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) ) |
37 |
34 36
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ 𝐺 = ◡ 𝐹 ) ) → 𝐺 : 𝑌 –1-1-onto→ 𝑋 ) |
38 |
|
f1of |
⊢ ( 𝐺 : 𝑌 –1-1-onto→ 𝑋 → 𝐺 : 𝑌 ⟶ 𝑋 ) |
39 |
37 38
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ 𝐺 = ◡ 𝐹 ) ) → 𝐺 : 𝑌 ⟶ 𝑋 ) |
40 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ 𝐺 = ◡ 𝐹 ) ) → 𝐺 = ◡ 𝐹 ) |
41 |
40
|
coeq1d |
⊢ ( ( 𝜑 ∧ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ 𝐺 = ◡ 𝐹 ) ) → ( 𝐺 ∘ 𝐹 ) = ( ◡ 𝐹 ∘ 𝐹 ) ) |
42 |
|
f1ococnv1 |
⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → ( ◡ 𝐹 ∘ 𝐹 ) = ( I ↾ 𝑋 ) ) |
43 |
42
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ 𝐺 = ◡ 𝐹 ) ) → ( ◡ 𝐹 ∘ 𝐹 ) = ( I ↾ 𝑋 ) ) |
44 |
41 43
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ 𝐺 = ◡ 𝐹 ) ) → ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝑋 ) ) |
45 |
40
|
coeq2d |
⊢ ( ( 𝜑 ∧ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ 𝐺 = ◡ 𝐹 ) ) → ( 𝐹 ∘ 𝐺 ) = ( 𝐹 ∘ ◡ 𝐹 ) ) |
46 |
|
f1ococnv2 |
⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → ( 𝐹 ∘ ◡ 𝐹 ) = ( I ↾ 𝑌 ) ) |
47 |
46
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ 𝐺 = ◡ 𝐹 ) ) → ( 𝐹 ∘ ◡ 𝐹 ) = ( I ↾ 𝑌 ) ) |
48 |
45 47
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ 𝐺 = ◡ 𝐹 ) ) → ( 𝐹 ∘ 𝐺 ) = ( I ↾ 𝑌 ) ) |
49 |
44 48
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ 𝐺 = ◡ 𝐹 ) ) → ( ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝑋 ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ 𝑌 ) ) ) |
50 |
32 39 49
|
jca31 |
⊢ ( ( 𝜑 ∧ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ 𝐺 = ◡ 𝐹 ) ) → ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝐺 : 𝑌 ⟶ 𝑋 ) ∧ ( ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝑋 ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ 𝑌 ) ) ) ) |
51 |
30 50
|
impbida |
⊢ ( 𝜑 → ( ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝐺 : 𝑌 ⟶ 𝑋 ) ∧ ( ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝑋 ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ 𝑌 ) ) ) ↔ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ 𝐺 = ◡ 𝐹 ) ) ) |
52 |
13 24 51
|
3bitrd |
⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ↔ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ 𝐺 = ◡ 𝐹 ) ) ) |