| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							setcmon.c | 
							⊢ 𝐶  =  ( SetCat ‘ 𝑈 )  | 
						
						
							| 2 | 
							
								
							 | 
							setcmon.u | 
							⊢ ( 𝜑  →  𝑈  ∈  𝑉 )  | 
						
						
							| 3 | 
							
								
							 | 
							setcmon.x | 
							⊢ ( 𝜑  →  𝑋  ∈  𝑈 )  | 
						
						
							| 4 | 
							
								
							 | 
							setcmon.y | 
							⊢ ( 𝜑  →  𝑌  ∈  𝑈 )  | 
						
						
							| 5 | 
							
								
							 | 
							setciso.n | 
							⊢ 𝐼  =  ( Iso ‘ 𝐶 )  | 
						
						
							| 6 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐶 )  =  ( Base ‘ 𝐶 )  | 
						
						
							| 7 | 
							
								
							 | 
							eqid | 
							⊢ ( Inv ‘ 𝐶 )  =  ( Inv ‘ 𝐶 )  | 
						
						
							| 8 | 
							
								1
							 | 
							setccat | 
							⊢ ( 𝑈  ∈  𝑉  →  𝐶  ∈  Cat )  | 
						
						
							| 9 | 
							
								2 8
							 | 
							syl | 
							⊢ ( 𝜑  →  𝐶  ∈  Cat )  | 
						
						
							| 10 | 
							
								1 2
							 | 
							setcbas | 
							⊢ ( 𝜑  →  𝑈  =  ( Base ‘ 𝐶 ) )  | 
						
						
							| 11 | 
							
								3 10
							 | 
							eleqtrd | 
							⊢ ( 𝜑  →  𝑋  ∈  ( Base ‘ 𝐶 ) )  | 
						
						
							| 12 | 
							
								4 10
							 | 
							eleqtrd | 
							⊢ ( 𝜑  →  𝑌  ∈  ( Base ‘ 𝐶 ) )  | 
						
						
							| 13 | 
							
								6 7 9 11 12 5
							 | 
							isoval | 
							⊢ ( 𝜑  →  ( 𝑋 𝐼 𝑌 )  =  dom  ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							eleq2d | 
							⊢ ( 𝜑  →  ( 𝐹  ∈  ( 𝑋 𝐼 𝑌 )  ↔  𝐹  ∈  dom  ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ) )  | 
						
						
							| 15 | 
							
								6 7 9 11 12
							 | 
							invfun | 
							⊢ ( 𝜑  →  Fun  ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) )  | 
						
						
							| 16 | 
							
								
							 | 
							funfvbrb | 
							⊢ ( Fun  ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 )  →  ( 𝐹  ∈  dom  ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 )  ↔  𝐹 ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) )  | 
						
						
							| 17 | 
							
								15 16
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝐹  ∈  dom  ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 )  ↔  𝐹 ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) )  | 
						
						
							| 18 | 
							
								1 2 3 4 7
							 | 
							setcinv | 
							⊢ ( 𝜑  →  ( 𝐹 ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 )  ↔  ( 𝐹 : 𝑋 –1-1-onto→ 𝑌  ∧  ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 )  =  ◡ 𝐹 ) ) )  | 
						
						
							| 19 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝐹 : 𝑋 –1-1-onto→ 𝑌  ∧  ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 )  =  ◡ 𝐹 )  →  𝐹 : 𝑋 –1-1-onto→ 𝑌 )  | 
						
						
							| 20 | 
							
								18 19
							 | 
							biimtrdi | 
							⊢ ( 𝜑  →  ( 𝐹 ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 )  →  𝐹 : 𝑋 –1-1-onto→ 𝑌 ) )  | 
						
						
							| 21 | 
							
								17 20
							 | 
							sylbid | 
							⊢ ( 𝜑  →  ( 𝐹  ∈  dom  ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 )  →  𝐹 : 𝑋 –1-1-onto→ 𝑌 ) )  | 
						
						
							| 22 | 
							
								
							 | 
							eqid | 
							⊢ ◡ 𝐹  =  ◡ 𝐹  | 
						
						
							| 23 | 
							
								1 2 3 4 7
							 | 
							setcinv | 
							⊢ ( 𝜑  →  ( 𝐹 ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ◡ 𝐹  ↔  ( 𝐹 : 𝑋 –1-1-onto→ 𝑌  ∧  ◡ 𝐹  =  ◡ 𝐹 ) ) )  | 
						
						
							| 24 | 
							
								
							 | 
							funrel | 
							⊢ ( Fun  ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 )  →  Rel  ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) )  | 
						
						
							| 25 | 
							
								15 24
							 | 
							syl | 
							⊢ ( 𝜑  →  Rel  ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) )  | 
						
						
							| 26 | 
							
								
							 | 
							releldm | 
							⊢ ( ( Rel  ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 )  ∧  𝐹 ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ◡ 𝐹 )  →  𝐹  ∈  dom  ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							ex | 
							⊢ ( Rel  ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 )  →  ( 𝐹 ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ◡ 𝐹  →  𝐹  ∈  dom  ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ) )  | 
						
						
							| 28 | 
							
								25 27
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝐹 ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ◡ 𝐹  →  𝐹  ∈  dom  ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ) )  | 
						
						
							| 29 | 
							
								23 28
							 | 
							sylbird | 
							⊢ ( 𝜑  →  ( ( 𝐹 : 𝑋 –1-1-onto→ 𝑌  ∧  ◡ 𝐹  =  ◡ 𝐹 )  →  𝐹  ∈  dom  ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ) )  | 
						
						
							| 30 | 
							
								22 29
							 | 
							mpan2i | 
							⊢ ( 𝜑  →  ( 𝐹 : 𝑋 –1-1-onto→ 𝑌  →  𝐹  ∈  dom  ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ) )  | 
						
						
							| 31 | 
							
								21 30
							 | 
							impbid | 
							⊢ ( 𝜑  →  ( 𝐹  ∈  dom  ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 )  ↔  𝐹 : 𝑋 –1-1-onto→ 𝑌 ) )  | 
						
						
							| 32 | 
							
								14 31
							 | 
							bitrd | 
							⊢ ( 𝜑  →  ( 𝐹  ∈  ( 𝑋 𝐼 𝑌 )  ↔  𝐹 : 𝑋 –1-1-onto→ 𝑌 ) )  |