Step |
Hyp |
Ref |
Expression |
1 |
|
setcmon.c |
⊢ 𝐶 = ( SetCat ‘ 𝑈 ) |
2 |
|
setcmon.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
3 |
|
setcmon.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) |
4 |
|
setcmon.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑈 ) |
5 |
|
setcmon.h |
⊢ 𝑀 = ( Mono ‘ 𝐶 ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
7 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
8 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
9 |
1
|
setccat |
⊢ ( 𝑈 ∈ 𝑉 → 𝐶 ∈ Cat ) |
10 |
2 9
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
11 |
1 2
|
setcbas |
⊢ ( 𝜑 → 𝑈 = ( Base ‘ 𝐶 ) ) |
12 |
3 11
|
eleqtrd |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
13 |
4 11
|
eleqtrd |
⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝐶 ) ) |
14 |
6 7 8 5 10 12 13
|
monhom |
⊢ ( 𝜑 → ( 𝑋 𝑀 𝑌 ) ⊆ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
15 |
14
|
sselda |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) → 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
16 |
1 2 7 3 4
|
elsetchom |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ↔ 𝐹 : 𝑋 ⟶ 𝑌 ) ) |
17 |
16
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
18 |
15 17
|
syldan |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
19 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) |
20 |
19
|
sneqd |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → { ( 𝐹 ‘ 𝑥 ) } = { ( 𝐹 ‘ 𝑦 ) } ) |
21 |
20
|
xpeq2d |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝑋 × { ( 𝐹 ‘ 𝑥 ) } ) = ( 𝑋 × { ( 𝐹 ‘ 𝑦 ) } ) ) |
22 |
18
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
23 |
22
|
ffnd |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → 𝐹 Fn 𝑋 ) |
24 |
|
simprll |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → 𝑥 ∈ 𝑋 ) |
25 |
|
fcoconst |
⊢ ( ( 𝐹 Fn 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ∘ ( 𝑋 × { 𝑥 } ) ) = ( 𝑋 × { ( 𝐹 ‘ 𝑥 ) } ) ) |
26 |
23 24 25
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝐹 ∘ ( 𝑋 × { 𝑥 } ) ) = ( 𝑋 × { ( 𝐹 ‘ 𝑥 ) } ) ) |
27 |
|
simprlr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → 𝑦 ∈ 𝑋 ) |
28 |
|
fcoconst |
⊢ ( ( 𝐹 Fn 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ∘ ( 𝑋 × { 𝑦 } ) ) = ( 𝑋 × { ( 𝐹 ‘ 𝑦 ) } ) ) |
29 |
23 27 28
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝐹 ∘ ( 𝑋 × { 𝑦 } ) ) = ( 𝑋 × { ( 𝐹 ‘ 𝑦 ) } ) ) |
30 |
21 26 29
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝐹 ∘ ( 𝑋 × { 𝑥 } ) ) = ( 𝐹 ∘ ( 𝑋 × { 𝑦 } ) ) ) |
31 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → 𝑈 ∈ 𝑉 ) |
32 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → 𝑋 ∈ 𝑈 ) |
33 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → 𝑌 ∈ 𝑈 ) |
34 |
|
fconst6g |
⊢ ( 𝑥 ∈ 𝑋 → ( 𝑋 × { 𝑥 } ) : 𝑋 ⟶ 𝑋 ) |
35 |
24 34
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝑋 × { 𝑥 } ) : 𝑋 ⟶ 𝑋 ) |
36 |
1 31 8 32 32 33 35 22
|
setcco |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝐹 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ( 𝑋 × { 𝑥 } ) ) = ( 𝐹 ∘ ( 𝑋 × { 𝑥 } ) ) ) |
37 |
|
fconst6g |
⊢ ( 𝑦 ∈ 𝑋 → ( 𝑋 × { 𝑦 } ) : 𝑋 ⟶ 𝑋 ) |
38 |
27 37
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝑋 × { 𝑦 } ) : 𝑋 ⟶ 𝑋 ) |
39 |
1 31 8 32 32 33 38 22
|
setcco |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝐹 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ( 𝑋 × { 𝑦 } ) ) = ( 𝐹 ∘ ( 𝑋 × { 𝑦 } ) ) ) |
40 |
30 36 39
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝐹 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ( 𝑋 × { 𝑥 } ) ) = ( 𝐹 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ( 𝑋 × { 𝑦 } ) ) ) |
41 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → 𝐶 ∈ Cat ) |
42 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
43 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → 𝑌 ∈ ( Base ‘ 𝐶 ) ) |
44 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) |
45 |
1 31 7 32 32
|
elsetchom |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( ( 𝑋 × { 𝑥 } ) ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ↔ ( 𝑋 × { 𝑥 } ) : 𝑋 ⟶ 𝑋 ) ) |
46 |
35 45
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝑋 × { 𝑥 } ) ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
47 |
1 31 7 32 32
|
elsetchom |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( ( 𝑋 × { 𝑦 } ) ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ↔ ( 𝑋 × { 𝑦 } ) : 𝑋 ⟶ 𝑋 ) ) |
48 |
38 47
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝑋 × { 𝑦 } ) ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
49 |
6 7 8 5 41 42 43 42 44 46 48
|
moni |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( ( 𝐹 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ( 𝑋 × { 𝑥 } ) ) = ( 𝐹 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ( 𝑋 × { 𝑦 } ) ) ↔ ( 𝑋 × { 𝑥 } ) = ( 𝑋 × { 𝑦 } ) ) ) |
50 |
40 49
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝑋 × { 𝑥 } ) = ( 𝑋 × { 𝑦 } ) ) |
51 |
50
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( ( 𝑋 × { 𝑥 } ) ‘ 𝑥 ) = ( ( 𝑋 × { 𝑦 } ) ‘ 𝑥 ) ) |
52 |
|
vex |
⊢ 𝑥 ∈ V |
53 |
52
|
fvconst2 |
⊢ ( 𝑥 ∈ 𝑋 → ( ( 𝑋 × { 𝑥 } ) ‘ 𝑥 ) = 𝑥 ) |
54 |
24 53
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( ( 𝑋 × { 𝑥 } ) ‘ 𝑥 ) = 𝑥 ) |
55 |
|
vex |
⊢ 𝑦 ∈ V |
56 |
55
|
fvconst2 |
⊢ ( 𝑥 ∈ 𝑋 → ( ( 𝑋 × { 𝑦 } ) ‘ 𝑥 ) = 𝑦 ) |
57 |
24 56
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( ( 𝑋 × { 𝑦 } ) ‘ 𝑥 ) = 𝑦 ) |
58 |
51 54 57
|
3eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → 𝑥 = 𝑦 ) |
59 |
58
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
60 |
59
|
ralrimivva |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
61 |
|
dff13 |
⊢ ( 𝐹 : 𝑋 –1-1→ 𝑌 ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
62 |
18 60 61
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) → 𝐹 : 𝑋 –1-1→ 𝑌 ) |
63 |
|
f1f |
⊢ ( 𝐹 : 𝑋 –1-1→ 𝑌 → 𝐹 : 𝑋 ⟶ 𝑌 ) |
64 |
16
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
65 |
63 64
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) → 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
66 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) → 𝑈 = ( Base ‘ 𝐶 ) ) |
67 |
66
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) → ( 𝑧 ∈ 𝑈 ↔ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) |
68 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) ∧ ( 𝑧 ∈ 𝑈 ∧ ( 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) ) → 𝑈 ∈ 𝑉 ) |
69 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) ∧ ( 𝑧 ∈ 𝑈 ∧ ( 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) ) → 𝑧 ∈ 𝑈 ) |
70 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) ∧ ( 𝑧 ∈ 𝑈 ∧ ( 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) ) → 𝑋 ∈ 𝑈 ) |
71 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) ∧ ( 𝑧 ∈ 𝑈 ∧ ( 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) ) → 𝑌 ∈ 𝑈 ) |
72 |
|
simprrl |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) ∧ ( 𝑧 ∈ 𝑈 ∧ ( 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) ) → 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
73 |
1 68 7 69 70
|
elsetchom |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) ∧ ( 𝑧 ∈ 𝑈 ∧ ( 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) ) → ( 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ↔ 𝑔 : 𝑧 ⟶ 𝑋 ) ) |
74 |
72 73
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) ∧ ( 𝑧 ∈ 𝑈 ∧ ( 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) ) → 𝑔 : 𝑧 ⟶ 𝑋 ) |
75 |
63
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) ∧ ( 𝑧 ∈ 𝑈 ∧ ( 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
76 |
1 68 8 69 70 71 74 75
|
setcco |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) ∧ ( 𝑧 ∈ 𝑈 ∧ ( 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) ) → ( 𝐹 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 𝐹 ∘ 𝑔 ) ) |
77 |
|
simprrr |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) ∧ ( 𝑧 ∈ 𝑈 ∧ ( 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) ) → ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
78 |
1 68 7 69 70
|
elsetchom |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) ∧ ( 𝑧 ∈ 𝑈 ∧ ( 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) ) → ( ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ↔ ℎ : 𝑧 ⟶ 𝑋 ) ) |
79 |
77 78
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) ∧ ( 𝑧 ∈ 𝑈 ∧ ( 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) ) → ℎ : 𝑧 ⟶ 𝑋 ) |
80 |
1 68 8 69 70 71 79 75
|
setcco |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) ∧ ( 𝑧 ∈ 𝑈 ∧ ( 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) ) → ( 𝐹 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ℎ ) = ( 𝐹 ∘ ℎ ) ) |
81 |
76 80
|
eqeq12d |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) ∧ ( 𝑧 ∈ 𝑈 ∧ ( 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) ) → ( ( 𝐹 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 𝐹 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ℎ ) ↔ ( 𝐹 ∘ 𝑔 ) = ( 𝐹 ∘ ℎ ) ) ) |
82 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) ∧ ( 𝑧 ∈ 𝑈 ∧ ( 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) ) → 𝐹 : 𝑋 –1-1→ 𝑌 ) |
83 |
|
cocan1 |
⊢ ( ( 𝐹 : 𝑋 –1-1→ 𝑌 ∧ 𝑔 : 𝑧 ⟶ 𝑋 ∧ ℎ : 𝑧 ⟶ 𝑋 ) → ( ( 𝐹 ∘ 𝑔 ) = ( 𝐹 ∘ ℎ ) ↔ 𝑔 = ℎ ) ) |
84 |
82 74 79 83
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) ∧ ( 𝑧 ∈ 𝑈 ∧ ( 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) ) → ( ( 𝐹 ∘ 𝑔 ) = ( 𝐹 ∘ ℎ ) ↔ 𝑔 = ℎ ) ) |
85 |
84
|
biimpd |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) ∧ ( 𝑧 ∈ 𝑈 ∧ ( 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) ) → ( ( 𝐹 ∘ 𝑔 ) = ( 𝐹 ∘ ℎ ) → 𝑔 = ℎ ) ) |
86 |
81 85
|
sylbid |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) ∧ ( 𝑧 ∈ 𝑈 ∧ ( 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) ) → ( ( 𝐹 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 𝐹 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ℎ ) → 𝑔 = ℎ ) ) |
87 |
86
|
anassrs |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) ∧ 𝑧 ∈ 𝑈 ) ∧ ( 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ) ) → ( ( 𝐹 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 𝐹 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ℎ ) → 𝑔 = ℎ ) ) |
88 |
87
|
ralrimivva |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) ∧ 𝑧 ∈ 𝑈 ) → ∀ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ( ( 𝐹 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 𝐹 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ℎ ) → 𝑔 = ℎ ) ) |
89 |
88
|
ex |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) → ( 𝑧 ∈ 𝑈 → ∀ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ( ( 𝐹 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 𝐹 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ℎ ) → 𝑔 = ℎ ) ) ) |
90 |
67 89
|
sylbird |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) → ( 𝑧 ∈ ( Base ‘ 𝐶 ) → ∀ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ( ( 𝐹 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 𝐹 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ℎ ) → 𝑔 = ℎ ) ) ) |
91 |
90
|
ralrimiv |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) → ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ( ( 𝐹 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 𝐹 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ℎ ) → 𝑔 = ℎ ) ) |
92 |
6 7 8 5 10 12 13
|
ismon2 |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ↔ ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ( ( 𝐹 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 𝐹 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ℎ ) → 𝑔 = ℎ ) ) ) ) |
93 |
92
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) → ( 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ↔ ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ∀ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑋 ) ( ( 𝐹 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝑔 ) = ( 𝐹 ( 〈 𝑧 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ℎ ) → 𝑔 = ℎ ) ) ) ) |
94 |
65 91 93
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) → 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) |
95 |
62 94
|
impbida |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ↔ 𝐹 : 𝑋 –1-1→ 𝑌 ) ) |