Step |
Hyp |
Ref |
Expression |
1 |
|
setcmon.c |
⊢ 𝐶 = ( SetCat ‘ 𝑈 ) |
2 |
|
setcmon.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
3 |
|
setcmon.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) |
4 |
|
setcmon.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑈 ) |
5 |
|
setcsect.n |
⊢ 𝑆 = ( Sect ‘ 𝐶 ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
7 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
8 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
9 |
|
eqid |
⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) |
10 |
1
|
setccat |
⊢ ( 𝑈 ∈ 𝑉 → 𝐶 ∈ Cat ) |
11 |
2 10
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
12 |
1 2
|
setcbas |
⊢ ( 𝜑 → 𝑈 = ( Base ‘ 𝐶 ) ) |
13 |
3 12
|
eleqtrd |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
14 |
4 12
|
eleqtrd |
⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝐶 ) ) |
15 |
6 7 8 9 5 11 13 14
|
issect |
⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ↔ ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) ) |
16 |
1 2 7 3 4
|
elsetchom |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ↔ 𝐹 : 𝑋 ⟶ 𝑌 ) ) |
17 |
1 2 7 4 3
|
elsetchom |
⊢ ( 𝜑 → ( 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ↔ 𝐺 : 𝑌 ⟶ 𝑋 ) ) |
18 |
16 17
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝐺 : 𝑌 ⟶ 𝑋 ) ) ) |
19 |
18
|
anbi1d |
⊢ ( 𝜑 → ( ( ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ↔ ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝐺 : 𝑌 ⟶ 𝑋 ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) ) |
20 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝐺 : 𝑌 ⟶ 𝑋 ) ) → 𝑈 ∈ 𝑉 ) |
21 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝐺 : 𝑌 ⟶ 𝑋 ) ) → 𝑋 ∈ 𝑈 ) |
22 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝐺 : 𝑌 ⟶ 𝑋 ) ) → 𝑌 ∈ 𝑈 ) |
23 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝐺 : 𝑌 ⟶ 𝑋 ) ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
24 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝐺 : 𝑌 ⟶ 𝑋 ) ) → 𝐺 : 𝑌 ⟶ 𝑋 ) |
25 |
1 20 8 21 22 21 23 24
|
setcco |
⊢ ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝐺 : 𝑌 ⟶ 𝑋 ) ) → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( 𝐺 ∘ 𝐹 ) ) |
26 |
1 9 2 3
|
setcid |
⊢ ( 𝜑 → ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) = ( I ↾ 𝑋 ) ) |
27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝐺 : 𝑌 ⟶ 𝑋 ) ) → ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) = ( I ↾ 𝑋 ) ) |
28 |
25 27
|
eqeq12d |
⊢ ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝐺 : 𝑌 ⟶ 𝑋 ) ) → ( ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ↔ ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝑋 ) ) ) |
29 |
28
|
pm5.32da |
⊢ ( 𝜑 → ( ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝐺 : 𝑌 ⟶ 𝑋 ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ↔ ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝐺 : 𝑌 ⟶ 𝑋 ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝑋 ) ) ) ) |
30 |
19 29
|
bitrd |
⊢ ( 𝜑 → ( ( ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ↔ ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝐺 : 𝑌 ⟶ 𝑋 ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝑋 ) ) ) ) |
31 |
|
df-3an |
⊢ ( ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ↔ ( ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) |
32 |
|
df-3an |
⊢ ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝐺 : 𝑌 ⟶ 𝑋 ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝑋 ) ) ↔ ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝐺 : 𝑌 ⟶ 𝑋 ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝑋 ) ) ) |
33 |
30 31 32
|
3bitr4g |
⊢ ( 𝜑 → ( ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝐺 : 𝑌 ⟶ 𝑋 ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝑋 ) ) ) ) |
34 |
15 33
|
bitrd |
⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝐺 : 𝑌 ⟶ 𝑋 ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝑋 ) ) ) ) |