Step |
Hyp |
Ref |
Expression |
1 |
|
setcthin.c |
⊢ ( 𝜑 → 𝐶 = ( SetCat ‘ 𝑈 ) ) |
2 |
|
setcthin.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
3 |
|
setcthin.x |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑈 ∃* 𝑝 𝑝 ∈ 𝑥 ) |
4 |
|
eqid |
⊢ ( SetCat ‘ 𝑈 ) = ( SetCat ‘ 𝑈 ) |
5 |
4 2
|
setcbas |
⊢ ( 𝜑 → 𝑈 = ( Base ‘ ( SetCat ‘ 𝑈 ) ) ) |
6 |
|
eqidd |
⊢ ( 𝜑 → ( Hom ‘ ( SetCat ‘ 𝑈 ) ) = ( Hom ‘ ( SetCat ‘ 𝑈 ) ) ) |
7 |
|
elequ2 |
⊢ ( 𝑥 = 𝑧 → ( 𝑝 ∈ 𝑥 ↔ 𝑝 ∈ 𝑧 ) ) |
8 |
7
|
mobidv |
⊢ ( 𝑥 = 𝑧 → ( ∃* 𝑝 𝑝 ∈ 𝑥 ↔ ∃* 𝑝 𝑝 ∈ 𝑧 ) ) |
9 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ) → ∀ 𝑥 ∈ 𝑈 ∃* 𝑝 𝑝 ∈ 𝑥 ) |
10 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ) → 𝑧 ∈ 𝑈 ) |
11 |
8 9 10
|
rspcdva |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ) → ∃* 𝑝 𝑝 ∈ 𝑧 ) |
12 |
|
mofmo |
⊢ ( ∃* 𝑝 𝑝 ∈ 𝑧 → ∃* 𝑓 𝑓 : 𝑦 ⟶ 𝑧 ) |
13 |
11 12
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ) → ∃* 𝑓 𝑓 : 𝑦 ⟶ 𝑧 ) |
14 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ) → 𝑈 ∈ 𝑉 ) |
15 |
|
eqid |
⊢ ( Hom ‘ ( SetCat ‘ 𝑈 ) ) = ( Hom ‘ ( SetCat ‘ 𝑈 ) ) |
16 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ) → 𝑦 ∈ 𝑈 ) |
17 |
4 14 15 16 10
|
elsetchom |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ) → ( 𝑓 ∈ ( 𝑦 ( Hom ‘ ( SetCat ‘ 𝑈 ) ) 𝑧 ) ↔ 𝑓 : 𝑦 ⟶ 𝑧 ) ) |
18 |
17
|
mobidv |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ) → ( ∃* 𝑓 𝑓 ∈ ( 𝑦 ( Hom ‘ ( SetCat ‘ 𝑈 ) ) 𝑧 ) ↔ ∃* 𝑓 𝑓 : 𝑦 ⟶ 𝑧 ) ) |
19 |
13 18
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ) → ∃* 𝑓 𝑓 ∈ ( 𝑦 ( Hom ‘ ( SetCat ‘ 𝑈 ) ) 𝑧 ) ) |
20 |
4
|
setccat |
⊢ ( 𝑈 ∈ 𝑉 → ( SetCat ‘ 𝑈 ) ∈ Cat ) |
21 |
2 20
|
syl |
⊢ ( 𝜑 → ( SetCat ‘ 𝑈 ) ∈ Cat ) |
22 |
5 6 19 21
|
isthincd |
⊢ ( 𝜑 → ( SetCat ‘ 𝑈 ) ∈ ThinCat ) |
23 |
1 22
|
eqeltrd |
⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) |