| Step |
Hyp |
Ref |
Expression |
| 1 |
|
setcthin.c |
⊢ ( 𝜑 → 𝐶 = ( SetCat ‘ 𝑈 ) ) |
| 2 |
|
setcthin.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
| 3 |
|
setcthin.x |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑈 ∃* 𝑝 𝑝 ∈ 𝑥 ) |
| 4 |
|
eqid |
⊢ ( SetCat ‘ 𝑈 ) = ( SetCat ‘ 𝑈 ) |
| 5 |
4 2
|
setcbas |
⊢ ( 𝜑 → 𝑈 = ( Base ‘ ( SetCat ‘ 𝑈 ) ) ) |
| 6 |
|
eqidd |
⊢ ( 𝜑 → ( Hom ‘ ( SetCat ‘ 𝑈 ) ) = ( Hom ‘ ( SetCat ‘ 𝑈 ) ) ) |
| 7 |
|
elequ2 |
⊢ ( 𝑥 = 𝑧 → ( 𝑝 ∈ 𝑥 ↔ 𝑝 ∈ 𝑧 ) ) |
| 8 |
7
|
mobidv |
⊢ ( 𝑥 = 𝑧 → ( ∃* 𝑝 𝑝 ∈ 𝑥 ↔ ∃* 𝑝 𝑝 ∈ 𝑧 ) ) |
| 9 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ) → ∀ 𝑥 ∈ 𝑈 ∃* 𝑝 𝑝 ∈ 𝑥 ) |
| 10 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ) → 𝑧 ∈ 𝑈 ) |
| 11 |
8 9 10
|
rspcdva |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ) → ∃* 𝑝 𝑝 ∈ 𝑧 ) |
| 12 |
|
mofmo |
⊢ ( ∃* 𝑝 𝑝 ∈ 𝑧 → ∃* 𝑓 𝑓 : 𝑦 ⟶ 𝑧 ) |
| 13 |
11 12
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ) → ∃* 𝑓 𝑓 : 𝑦 ⟶ 𝑧 ) |
| 14 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ) → 𝑈 ∈ 𝑉 ) |
| 15 |
|
eqid |
⊢ ( Hom ‘ ( SetCat ‘ 𝑈 ) ) = ( Hom ‘ ( SetCat ‘ 𝑈 ) ) |
| 16 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ) → 𝑦 ∈ 𝑈 ) |
| 17 |
4 14 15 16 10
|
elsetchom |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ) → ( 𝑓 ∈ ( 𝑦 ( Hom ‘ ( SetCat ‘ 𝑈 ) ) 𝑧 ) ↔ 𝑓 : 𝑦 ⟶ 𝑧 ) ) |
| 18 |
17
|
mobidv |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ) → ( ∃* 𝑓 𝑓 ∈ ( 𝑦 ( Hom ‘ ( SetCat ‘ 𝑈 ) ) 𝑧 ) ↔ ∃* 𝑓 𝑓 : 𝑦 ⟶ 𝑧 ) ) |
| 19 |
13 18
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ) → ∃* 𝑓 𝑓 ∈ ( 𝑦 ( Hom ‘ ( SetCat ‘ 𝑈 ) ) 𝑧 ) ) |
| 20 |
4
|
setccat |
⊢ ( 𝑈 ∈ 𝑉 → ( SetCat ‘ 𝑈 ) ∈ Cat ) |
| 21 |
2 20
|
syl |
⊢ ( 𝜑 → ( SetCat ‘ 𝑈 ) ∈ Cat ) |
| 22 |
5 6 19 21
|
isthincd |
⊢ ( 𝜑 → ( SetCat ‘ 𝑈 ) ∈ ThinCat ) |
| 23 |
1 22
|
eqeltrd |
⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) |