Metamath Proof Explorer


Theorem setind

Description: Set (epsilon) induction. Theorem 5.22 of TakeutiZaring p. 21. (Contributed by NM, 17-Sep-2003)

Ref Expression
Assertion setind ( ∀ 𝑥 ( 𝑥𝐴𝑥𝐴 ) → 𝐴 = V )

Proof

Step Hyp Ref Expression
1 ssindif0 ( 𝑦𝐴 ↔ ( 𝑦 ∩ ( V ∖ 𝐴 ) ) = ∅ )
2 sseq1 ( 𝑥 = 𝑦 → ( 𝑥𝐴𝑦𝐴 ) )
3 eleq1w ( 𝑥 = 𝑦 → ( 𝑥𝐴𝑦𝐴 ) )
4 2 3 imbi12d ( 𝑥 = 𝑦 → ( ( 𝑥𝐴𝑥𝐴 ) ↔ ( 𝑦𝐴𝑦𝐴 ) ) )
5 4 spvv ( ∀ 𝑥 ( 𝑥𝐴𝑥𝐴 ) → ( 𝑦𝐴𝑦𝐴 ) )
6 1 5 syl5bir ( ∀ 𝑥 ( 𝑥𝐴𝑥𝐴 ) → ( ( 𝑦 ∩ ( V ∖ 𝐴 ) ) = ∅ → 𝑦𝐴 ) )
7 eldifn ( 𝑦 ∈ ( V ∖ 𝐴 ) → ¬ 𝑦𝐴 )
8 6 7 nsyli ( ∀ 𝑥 ( 𝑥𝐴𝑥𝐴 ) → ( 𝑦 ∈ ( V ∖ 𝐴 ) → ¬ ( 𝑦 ∩ ( V ∖ 𝐴 ) ) = ∅ ) )
9 8 imp ( ( ∀ 𝑥 ( 𝑥𝐴𝑥𝐴 ) ∧ 𝑦 ∈ ( V ∖ 𝐴 ) ) → ¬ ( 𝑦 ∩ ( V ∖ 𝐴 ) ) = ∅ )
10 9 nrexdv ( ∀ 𝑥 ( 𝑥𝐴𝑥𝐴 ) → ¬ ∃ 𝑦 ∈ ( V ∖ 𝐴 ) ( 𝑦 ∩ ( V ∖ 𝐴 ) ) = ∅ )
11 zfregs ( ( V ∖ 𝐴 ) ≠ ∅ → ∃ 𝑦 ∈ ( V ∖ 𝐴 ) ( 𝑦 ∩ ( V ∖ 𝐴 ) ) = ∅ )
12 11 necon1bi ( ¬ ∃ 𝑦 ∈ ( V ∖ 𝐴 ) ( 𝑦 ∩ ( V ∖ 𝐴 ) ) = ∅ → ( V ∖ 𝐴 ) = ∅ )
13 10 12 syl ( ∀ 𝑥 ( 𝑥𝐴𝑥𝐴 ) → ( V ∖ 𝐴 ) = ∅ )
14 vdif0 ( 𝐴 = V ↔ ( V ∖ 𝐴 ) = ∅ )
15 13 14 sylibr ( ∀ 𝑥 ( 𝑥𝐴𝑥𝐴 ) → 𝐴 = V )