Step |
Hyp |
Ref |
Expression |
1 |
|
df-rab |
⊢ { 𝑥 ∈ 𝐴 ∣ 𝑥 𝑅 𝑋 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝑅 𝑋 ) } |
2 |
|
vex |
⊢ 𝑥 ∈ V |
3 |
2
|
elpred |
⊢ ( 𝑋 ∈ 𝐴 → ( 𝑥 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝑅 𝑋 ) ) ) |
4 |
3
|
abbi2dv |
⊢ ( 𝑋 ∈ 𝐴 → Pred ( 𝑅 , 𝐴 , 𝑋 ) = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝑅 𝑋 ) } ) |
5 |
1 4
|
eqtr4id |
⊢ ( 𝑋 ∈ 𝐴 → { 𝑥 ∈ 𝐴 ∣ 𝑥 𝑅 𝑋 } = Pred ( 𝑅 , 𝐴 , 𝑋 ) ) |
6 |
5
|
adantr |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → { 𝑥 ∈ 𝐴 ∣ 𝑥 𝑅 𝑋 } = Pred ( 𝑅 , 𝐴 , 𝑋 ) ) |
7 |
|
seex |
⊢ ( ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) → { 𝑥 ∈ 𝐴 ∣ 𝑥 𝑅 𝑋 } ∈ V ) |
8 |
7
|
ancoms |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → { 𝑥 ∈ 𝐴 ∣ 𝑥 𝑅 𝑋 } ∈ V ) |
9 |
6 8
|
eqeltrrd |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ V ) |