Step |
Hyp |
Ref |
Expression |
1 |
|
setsidvald.e |
⊢ 𝐸 = Slot 𝑁 |
2 |
|
setsidvald.n |
⊢ 𝑁 ∈ ℕ |
3 |
|
setsidvald.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) |
4 |
|
setsidvald.f |
⊢ ( 𝜑 → Fun 𝑆 ) |
5 |
|
setsidvald.d |
⊢ ( 𝜑 → ( 𝐸 ‘ ndx ) ∈ dom 𝑆 ) |
6 |
|
fvex |
⊢ ( 𝐸 ‘ 𝑆 ) ∈ V |
7 |
|
setsval |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ ( 𝐸 ‘ 𝑆 ) ∈ V ) → ( 𝑆 sSet 〈 ( 𝐸 ‘ ndx ) , ( 𝐸 ‘ 𝑆 ) 〉 ) = ( ( 𝑆 ↾ ( V ∖ { ( 𝐸 ‘ ndx ) } ) ) ∪ { 〈 ( 𝐸 ‘ ndx ) , ( 𝐸 ‘ 𝑆 ) 〉 } ) ) |
8 |
3 6 7
|
sylancl |
⊢ ( 𝜑 → ( 𝑆 sSet 〈 ( 𝐸 ‘ ndx ) , ( 𝐸 ‘ 𝑆 ) 〉 ) = ( ( 𝑆 ↾ ( V ∖ { ( 𝐸 ‘ ndx ) } ) ) ∪ { 〈 ( 𝐸 ‘ ndx ) , ( 𝐸 ‘ 𝑆 ) 〉 } ) ) |
9 |
1 2
|
ndxid |
⊢ 𝐸 = Slot ( 𝐸 ‘ ndx ) |
10 |
9 3
|
strfvnd |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝑆 ) = ( 𝑆 ‘ ( 𝐸 ‘ ndx ) ) ) |
11 |
10
|
opeq2d |
⊢ ( 𝜑 → 〈 ( 𝐸 ‘ ndx ) , ( 𝐸 ‘ 𝑆 ) 〉 = 〈 ( 𝐸 ‘ ndx ) , ( 𝑆 ‘ ( 𝐸 ‘ ndx ) ) 〉 ) |
12 |
11
|
sneqd |
⊢ ( 𝜑 → { 〈 ( 𝐸 ‘ ndx ) , ( 𝐸 ‘ 𝑆 ) 〉 } = { 〈 ( 𝐸 ‘ ndx ) , ( 𝑆 ‘ ( 𝐸 ‘ ndx ) ) 〉 } ) |
13 |
12
|
uneq2d |
⊢ ( 𝜑 → ( ( 𝑆 ↾ ( V ∖ { ( 𝐸 ‘ ndx ) } ) ) ∪ { 〈 ( 𝐸 ‘ ndx ) , ( 𝐸 ‘ 𝑆 ) 〉 } ) = ( ( 𝑆 ↾ ( V ∖ { ( 𝐸 ‘ ndx ) } ) ) ∪ { 〈 ( 𝐸 ‘ ndx ) , ( 𝑆 ‘ ( 𝐸 ‘ ndx ) ) 〉 } ) ) |
14 |
|
funresdfunsn |
⊢ ( ( Fun 𝑆 ∧ ( 𝐸 ‘ ndx ) ∈ dom 𝑆 ) → ( ( 𝑆 ↾ ( V ∖ { ( 𝐸 ‘ ndx ) } ) ) ∪ { 〈 ( 𝐸 ‘ ndx ) , ( 𝑆 ‘ ( 𝐸 ‘ ndx ) ) 〉 } ) = 𝑆 ) |
15 |
4 5 14
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑆 ↾ ( V ∖ { ( 𝐸 ‘ ndx ) } ) ) ∪ { 〈 ( 𝐸 ‘ ndx ) , ( 𝑆 ‘ ( 𝐸 ‘ ndx ) ) 〉 } ) = 𝑆 ) |
16 |
8 13 15
|
3eqtrrd |
⊢ ( 𝜑 → 𝑆 = ( 𝑆 sSet 〈 ( 𝐸 ‘ ndx ) , ( 𝐸 ‘ 𝑆 ) 〉 ) ) |