Metamath Proof Explorer


Theorem setsmsbas

Description: The base set of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015)

Ref Expression
Hypotheses setsms.x ( 𝜑𝑋 = ( Base ‘ 𝑀 ) )
setsms.d ( 𝜑𝐷 = ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) )
setsms.k ( 𝜑𝐾 = ( 𝑀 sSet ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝐷 ) ⟩ ) )
Assertion setsmsbas ( 𝜑𝑋 = ( Base ‘ 𝐾 ) )

Proof

Step Hyp Ref Expression
1 setsms.x ( 𝜑𝑋 = ( Base ‘ 𝑀 ) )
2 setsms.d ( 𝜑𝐷 = ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) )
3 setsms.k ( 𝜑𝐾 = ( 𝑀 sSet ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝐷 ) ⟩ ) )
4 baseid Base = Slot ( Base ‘ ndx )
5 1re 1 ∈ ℝ
6 1lt9 1 < 9
7 5 6 ltneii 1 ≠ 9
8 basendx ( Base ‘ ndx ) = 1
9 tsetndx ( TopSet ‘ ndx ) = 9
10 8 9 neeq12i ( ( Base ‘ ndx ) ≠ ( TopSet ‘ ndx ) ↔ 1 ≠ 9 )
11 7 10 mpbir ( Base ‘ ndx ) ≠ ( TopSet ‘ ndx )
12 4 11 setsnid ( Base ‘ 𝑀 ) = ( Base ‘ ( 𝑀 sSet ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝐷 ) ⟩ ) )
13 3 fveq2d ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ ( 𝑀 sSet ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝐷 ) ⟩ ) ) )
14 12 1 13 3eqtr4a ( 𝜑𝑋 = ( Base ‘ 𝐾 ) )