Step |
Hyp |
Ref |
Expression |
1 |
|
setsms.x |
⊢ ( 𝜑 → 𝑋 = ( Base ‘ 𝑀 ) ) |
2 |
|
setsms.d |
⊢ ( 𝜑 → 𝐷 = ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ) |
3 |
|
setsms.k |
⊢ ( 𝜑 → 𝐾 = ( 𝑀 sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝐷 ) 〉 ) ) |
4 |
|
baseid |
⊢ Base = Slot ( Base ‘ ndx ) |
5 |
|
1re |
⊢ 1 ∈ ℝ |
6 |
|
1lt9 |
⊢ 1 < 9 |
7 |
5 6
|
ltneii |
⊢ 1 ≠ 9 |
8 |
|
basendx |
⊢ ( Base ‘ ndx ) = 1 |
9 |
|
tsetndx |
⊢ ( TopSet ‘ ndx ) = 9 |
10 |
8 9
|
neeq12i |
⊢ ( ( Base ‘ ndx ) ≠ ( TopSet ‘ ndx ) ↔ 1 ≠ 9 ) |
11 |
7 10
|
mpbir |
⊢ ( Base ‘ ndx ) ≠ ( TopSet ‘ ndx ) |
12 |
4 11
|
setsnid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ ( 𝑀 sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝐷 ) 〉 ) ) |
13 |
3
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ ( 𝑀 sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝐷 ) 〉 ) ) ) |
14 |
12 1 13
|
3eqtr4a |
⊢ ( 𝜑 → 𝑋 = ( Base ‘ 𝐾 ) ) |