Step |
Hyp |
Ref |
Expression |
1 |
|
setsms.x |
⊢ ( 𝜑 → 𝑋 = ( Base ‘ 𝑀 ) ) |
2 |
|
setsms.d |
⊢ ( 𝜑 → 𝐷 = ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ) |
3 |
|
setsms.k |
⊢ ( 𝜑 → 𝐾 = ( 𝑀 sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝐷 ) 〉 ) ) |
4 |
|
dsid |
⊢ dist = Slot ( dist ‘ ndx ) |
5 |
|
9re |
⊢ 9 ∈ ℝ |
6 |
|
1nn |
⊢ 1 ∈ ℕ |
7 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
8 |
|
9nn0 |
⊢ 9 ∈ ℕ0 |
9 |
|
9lt10 |
⊢ 9 < ; 1 0 |
10 |
6 7 8 9
|
declti |
⊢ 9 < ; 1 2 |
11 |
5 10
|
gtneii |
⊢ ; 1 2 ≠ 9 |
12 |
|
dsndx |
⊢ ( dist ‘ ndx ) = ; 1 2 |
13 |
|
tsetndx |
⊢ ( TopSet ‘ ndx ) = 9 |
14 |
12 13
|
neeq12i |
⊢ ( ( dist ‘ ndx ) ≠ ( TopSet ‘ ndx ) ↔ ; 1 2 ≠ 9 ) |
15 |
11 14
|
mpbir |
⊢ ( dist ‘ ndx ) ≠ ( TopSet ‘ ndx ) |
16 |
4 15
|
setsnid |
⊢ ( dist ‘ 𝑀 ) = ( dist ‘ ( 𝑀 sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝐷 ) 〉 ) ) |
17 |
3
|
fveq2d |
⊢ ( 𝜑 → ( dist ‘ 𝐾 ) = ( dist ‘ ( 𝑀 sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝐷 ) 〉 ) ) ) |
18 |
16 17
|
eqtr4id |
⊢ ( 𝜑 → ( dist ‘ 𝑀 ) = ( dist ‘ 𝐾 ) ) |