| Step | Hyp | Ref | Expression | 
						
							| 1 |  | setsms.x | ⊢ ( 𝜑  →  𝑋  =  ( Base ‘ 𝑀 ) ) | 
						
							| 2 |  | setsms.d | ⊢ ( 𝜑  →  𝐷  =  ( ( dist ‘ 𝑀 )  ↾  ( 𝑋  ×  𝑋 ) ) ) | 
						
							| 3 |  | setsms.k | ⊢ ( 𝜑  →  𝐾  =  ( 𝑀  sSet  〈 ( TopSet ‘ ndx ) ,  ( MetOpen ‘ 𝐷 ) 〉 ) ) | 
						
							| 4 |  | setsms.m | ⊢ ( 𝜑  →  𝑀  ∈  𝑉 ) | 
						
							| 5 |  | fvex | ⊢ ( MetOpen ‘ 𝐷 )  ∈  V | 
						
							| 6 |  | tsetid | ⊢ TopSet  =  Slot  ( TopSet ‘ ndx ) | 
						
							| 7 | 6 | setsid | ⊢ ( ( 𝑀  ∈  𝑉  ∧  ( MetOpen ‘ 𝐷 )  ∈  V )  →  ( MetOpen ‘ 𝐷 )  =  ( TopSet ‘ ( 𝑀  sSet  〈 ( TopSet ‘ ndx ) ,  ( MetOpen ‘ 𝐷 ) 〉 ) ) ) | 
						
							| 8 | 4 5 7 | sylancl | ⊢ ( 𝜑  →  ( MetOpen ‘ 𝐷 )  =  ( TopSet ‘ ( 𝑀  sSet  〈 ( TopSet ‘ ndx ) ,  ( MetOpen ‘ 𝐷 ) 〉 ) ) ) | 
						
							| 9 | 3 | fveq2d | ⊢ ( 𝜑  →  ( TopSet ‘ 𝐾 )  =  ( TopSet ‘ ( 𝑀  sSet  〈 ( TopSet ‘ ndx ) ,  ( MetOpen ‘ 𝐷 ) 〉 ) ) ) | 
						
							| 10 | 8 9 | eqtr4d | ⊢ ( 𝜑  →  ( MetOpen ‘ 𝐷 )  =  ( TopSet ‘ 𝐾 ) ) |