Step |
Hyp |
Ref |
Expression |
1 |
|
setsn0fun.s |
⊢ ( 𝜑 → 𝑆 Struct 𝑋 ) |
2 |
|
setsn0fun.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑈 ) |
3 |
|
setsn0fun.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝑊 ) |
4 |
|
structn0fun |
⊢ ( 𝑆 Struct 𝑋 → Fun ( 𝑆 ∖ { ∅ } ) ) |
5 |
|
structex |
⊢ ( 𝑆 Struct 𝑋 → 𝑆 ∈ V ) |
6 |
|
setsfun0 |
⊢ ( ( ( 𝑆 ∈ V ∧ Fun ( 𝑆 ∖ { ∅ } ) ) ∧ ( 𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊 ) ) → Fun ( ( 𝑆 sSet 〈 𝐼 , 𝐸 〉 ) ∖ { ∅ } ) ) |
7 |
5 6
|
sylanl1 |
⊢ ( ( ( 𝑆 Struct 𝑋 ∧ Fun ( 𝑆 ∖ { ∅ } ) ) ∧ ( 𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊 ) ) → Fun ( ( 𝑆 sSet 〈 𝐼 , 𝐸 〉 ) ∖ { ∅ } ) ) |
8 |
7
|
expcom |
⊢ ( ( 𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊 ) → ( ( 𝑆 Struct 𝑋 ∧ Fun ( 𝑆 ∖ { ∅ } ) ) → Fun ( ( 𝑆 sSet 〈 𝐼 , 𝐸 〉 ) ∖ { ∅ } ) ) ) |
9 |
2 3 8
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑆 Struct 𝑋 ∧ Fun ( 𝑆 ∖ { ∅ } ) ) → Fun ( ( 𝑆 sSet 〈 𝐼 , 𝐸 〉 ) ∖ { ∅ } ) ) ) |
10 |
9
|
com12 |
⊢ ( ( 𝑆 Struct 𝑋 ∧ Fun ( 𝑆 ∖ { ∅ } ) ) → ( 𝜑 → Fun ( ( 𝑆 sSet 〈 𝐼 , 𝐸 〉 ) ∖ { ∅ } ) ) ) |
11 |
4 10
|
mpdan |
⊢ ( 𝑆 Struct 𝑋 → ( 𝜑 → Fun ( ( 𝑆 sSet 〈 𝐼 , 𝐸 〉 ) ∖ { ∅ } ) ) ) |
12 |
1 11
|
mpcom |
⊢ ( 𝜑 → Fun ( ( 𝑆 sSet 〈 𝐼 , 𝐸 〉 ) ∖ { ∅ } ) ) |