Metamath Proof Explorer


Theorem setsn0fun

Description: The value of the structure replacement function (without the empty set) is a function if the structure (without the empty set) is a function. (Contributed by AV, 7-Jun-2021) (Revised by AV, 16-Nov-2021)

Ref Expression
Hypotheses setsn0fun.s ( 𝜑𝑆 Struct 𝑋 )
setsn0fun.i ( 𝜑𝐼𝑈 )
setsn0fun.e ( 𝜑𝐸𝑊 )
Assertion setsn0fun ( 𝜑 → Fun ( ( 𝑆 sSet ⟨ 𝐼 , 𝐸 ⟩ ) ∖ { ∅ } ) )

Proof

Step Hyp Ref Expression
1 setsn0fun.s ( 𝜑𝑆 Struct 𝑋 )
2 setsn0fun.i ( 𝜑𝐼𝑈 )
3 setsn0fun.e ( 𝜑𝐸𝑊 )
4 structn0fun ( 𝑆 Struct 𝑋 → Fun ( 𝑆 ∖ { ∅ } ) )
5 structex ( 𝑆 Struct 𝑋𝑆 ∈ V )
6 setsfun0 ( ( ( 𝑆 ∈ V ∧ Fun ( 𝑆 ∖ { ∅ } ) ) ∧ ( 𝐼𝑈𝐸𝑊 ) ) → Fun ( ( 𝑆 sSet ⟨ 𝐼 , 𝐸 ⟩ ) ∖ { ∅ } ) )
7 5 6 sylanl1 ( ( ( 𝑆 Struct 𝑋 ∧ Fun ( 𝑆 ∖ { ∅ } ) ) ∧ ( 𝐼𝑈𝐸𝑊 ) ) → Fun ( ( 𝑆 sSet ⟨ 𝐼 , 𝐸 ⟩ ) ∖ { ∅ } ) )
8 7 expcom ( ( 𝐼𝑈𝐸𝑊 ) → ( ( 𝑆 Struct 𝑋 ∧ Fun ( 𝑆 ∖ { ∅ } ) ) → Fun ( ( 𝑆 sSet ⟨ 𝐼 , 𝐸 ⟩ ) ∖ { ∅ } ) ) )
9 2 3 8 syl2anc ( 𝜑 → ( ( 𝑆 Struct 𝑋 ∧ Fun ( 𝑆 ∖ { ∅ } ) ) → Fun ( ( 𝑆 sSet ⟨ 𝐼 , 𝐸 ⟩ ) ∖ { ∅ } ) ) )
10 9 com12 ( ( 𝑆 Struct 𝑋 ∧ Fun ( 𝑆 ∖ { ∅ } ) ) → ( 𝜑 → Fun ( ( 𝑆 sSet ⟨ 𝐼 , 𝐸 ⟩ ) ∖ { ∅ } ) ) )
11 4 10 mpdan ( 𝑆 Struct 𝑋 → ( 𝜑 → Fun ( ( 𝑆 sSet ⟨ 𝐼 , 𝐸 ⟩ ) ∖ { ∅ } ) ) )
12 1 11 mpcom ( 𝜑 → Fun ( ( 𝑆 sSet ⟨ 𝐼 , 𝐸 ⟩ ) ∖ { ∅ } ) )