Step |
Hyp |
Ref |
Expression |
1 |
|
setsid.e |
⊢ 𝐸 = Slot ( 𝐸 ‘ ndx ) |
2 |
|
setsnid.n |
⊢ ( 𝐸 ‘ ndx ) ≠ 𝐷 |
3 |
|
id |
⊢ ( 𝑊 ∈ V → 𝑊 ∈ V ) |
4 |
1 3
|
strfvnd |
⊢ ( 𝑊 ∈ V → ( 𝐸 ‘ 𝑊 ) = ( 𝑊 ‘ ( 𝐸 ‘ ndx ) ) ) |
5 |
|
ovex |
⊢ ( 𝑊 sSet 〈 𝐷 , 𝐶 〉 ) ∈ V |
6 |
5 1
|
strfvn |
⊢ ( 𝐸 ‘ ( 𝑊 sSet 〈 𝐷 , 𝐶 〉 ) ) = ( ( 𝑊 sSet 〈 𝐷 , 𝐶 〉 ) ‘ ( 𝐸 ‘ ndx ) ) |
7 |
|
setsres |
⊢ ( 𝑊 ∈ V → ( ( 𝑊 sSet 〈 𝐷 , 𝐶 〉 ) ↾ ( V ∖ { 𝐷 } ) ) = ( 𝑊 ↾ ( V ∖ { 𝐷 } ) ) ) |
8 |
7
|
fveq1d |
⊢ ( 𝑊 ∈ V → ( ( ( 𝑊 sSet 〈 𝐷 , 𝐶 〉 ) ↾ ( V ∖ { 𝐷 } ) ) ‘ ( 𝐸 ‘ ndx ) ) = ( ( 𝑊 ↾ ( V ∖ { 𝐷 } ) ) ‘ ( 𝐸 ‘ ndx ) ) ) |
9 |
|
fvex |
⊢ ( 𝐸 ‘ ndx ) ∈ V |
10 |
|
eldifsn |
⊢ ( ( 𝐸 ‘ ndx ) ∈ ( V ∖ { 𝐷 } ) ↔ ( ( 𝐸 ‘ ndx ) ∈ V ∧ ( 𝐸 ‘ ndx ) ≠ 𝐷 ) ) |
11 |
9 2 10
|
mpbir2an |
⊢ ( 𝐸 ‘ ndx ) ∈ ( V ∖ { 𝐷 } ) |
12 |
|
fvres |
⊢ ( ( 𝐸 ‘ ndx ) ∈ ( V ∖ { 𝐷 } ) → ( ( ( 𝑊 sSet 〈 𝐷 , 𝐶 〉 ) ↾ ( V ∖ { 𝐷 } ) ) ‘ ( 𝐸 ‘ ndx ) ) = ( ( 𝑊 sSet 〈 𝐷 , 𝐶 〉 ) ‘ ( 𝐸 ‘ ndx ) ) ) |
13 |
11 12
|
ax-mp |
⊢ ( ( ( 𝑊 sSet 〈 𝐷 , 𝐶 〉 ) ↾ ( V ∖ { 𝐷 } ) ) ‘ ( 𝐸 ‘ ndx ) ) = ( ( 𝑊 sSet 〈 𝐷 , 𝐶 〉 ) ‘ ( 𝐸 ‘ ndx ) ) |
14 |
|
fvres |
⊢ ( ( 𝐸 ‘ ndx ) ∈ ( V ∖ { 𝐷 } ) → ( ( 𝑊 ↾ ( V ∖ { 𝐷 } ) ) ‘ ( 𝐸 ‘ ndx ) ) = ( 𝑊 ‘ ( 𝐸 ‘ ndx ) ) ) |
15 |
11 14
|
ax-mp |
⊢ ( ( 𝑊 ↾ ( V ∖ { 𝐷 } ) ) ‘ ( 𝐸 ‘ ndx ) ) = ( 𝑊 ‘ ( 𝐸 ‘ ndx ) ) |
16 |
8 13 15
|
3eqtr3g |
⊢ ( 𝑊 ∈ V → ( ( 𝑊 sSet 〈 𝐷 , 𝐶 〉 ) ‘ ( 𝐸 ‘ ndx ) ) = ( 𝑊 ‘ ( 𝐸 ‘ ndx ) ) ) |
17 |
6 16
|
eqtrid |
⊢ ( 𝑊 ∈ V → ( 𝐸 ‘ ( 𝑊 sSet 〈 𝐷 , 𝐶 〉 ) ) = ( 𝑊 ‘ ( 𝐸 ‘ ndx ) ) ) |
18 |
4 17
|
eqtr4d |
⊢ ( 𝑊 ∈ V → ( 𝐸 ‘ 𝑊 ) = ( 𝐸 ‘ ( 𝑊 sSet 〈 𝐷 , 𝐶 〉 ) ) ) |
19 |
1
|
str0 |
⊢ ∅ = ( 𝐸 ‘ ∅ ) |
20 |
|
fvprc |
⊢ ( ¬ 𝑊 ∈ V → ( 𝐸 ‘ 𝑊 ) = ∅ ) |
21 |
|
reldmsets |
⊢ Rel dom sSet |
22 |
21
|
ovprc1 |
⊢ ( ¬ 𝑊 ∈ V → ( 𝑊 sSet 〈 𝐷 , 𝐶 〉 ) = ∅ ) |
23 |
22
|
fveq2d |
⊢ ( ¬ 𝑊 ∈ V → ( 𝐸 ‘ ( 𝑊 sSet 〈 𝐷 , 𝐶 〉 ) ) = ( 𝐸 ‘ ∅ ) ) |
24 |
19 20 23
|
3eqtr4a |
⊢ ( ¬ 𝑊 ∈ V → ( 𝐸 ‘ 𝑊 ) = ( 𝐸 ‘ ( 𝑊 sSet 〈 𝐷 , 𝐶 〉 ) ) ) |
25 |
18 24
|
pm2.61i |
⊢ ( 𝐸 ‘ 𝑊 ) = ( 𝐸 ‘ ( 𝑊 sSet 〈 𝐷 , 𝐶 〉 ) ) |