Metamath Proof Explorer


Theorem setsres

Description: The structure replacement function does not affect the value of S away from A . (Contributed by Mario Carneiro, 1-Dec-2014) (Revised by Mario Carneiro, 30-Apr-2015)

Ref Expression
Assertion setsres ( 𝑆𝑉 → ( ( 𝑆 sSet ⟨ 𝐴 , 𝐵 ⟩ ) ↾ ( V ∖ { 𝐴 } ) ) = ( 𝑆 ↾ ( V ∖ { 𝐴 } ) ) )

Proof

Step Hyp Ref Expression
1 opex 𝐴 , 𝐵 ⟩ ∈ V
2 setsvalg ( ( 𝑆𝑉 ∧ ⟨ 𝐴 , 𝐵 ⟩ ∈ V ) → ( 𝑆 sSet ⟨ 𝐴 , 𝐵 ⟩ ) = ( ( 𝑆 ↾ ( V ∖ dom { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ∪ { ⟨ 𝐴 , 𝐵 ⟩ } ) )
3 1 2 mpan2 ( 𝑆𝑉 → ( 𝑆 sSet ⟨ 𝐴 , 𝐵 ⟩ ) = ( ( 𝑆 ↾ ( V ∖ dom { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ∪ { ⟨ 𝐴 , 𝐵 ⟩ } ) )
4 3 reseq1d ( 𝑆𝑉 → ( ( 𝑆 sSet ⟨ 𝐴 , 𝐵 ⟩ ) ↾ ( V ∖ { 𝐴 } ) ) = ( ( ( 𝑆 ↾ ( V ∖ dom { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ∪ { ⟨ 𝐴 , 𝐵 ⟩ } ) ↾ ( V ∖ { 𝐴 } ) ) )
5 resundir ( ( ( 𝑆 ↾ ( V ∖ dom { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ∪ { ⟨ 𝐴 , 𝐵 ⟩ } ) ↾ ( V ∖ { 𝐴 } ) ) = ( ( ( 𝑆 ↾ ( V ∖ dom { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ↾ ( V ∖ { 𝐴 } ) ) ∪ ( { ⟨ 𝐴 , 𝐵 ⟩ } ↾ ( V ∖ { 𝐴 } ) ) )
6 dmsnopss dom { ⟨ 𝐴 , 𝐵 ⟩ } ⊆ { 𝐴 }
7 sscon ( dom { ⟨ 𝐴 , 𝐵 ⟩ } ⊆ { 𝐴 } → ( V ∖ { 𝐴 } ) ⊆ ( V ∖ dom { ⟨ 𝐴 , 𝐵 ⟩ } ) )
8 6 7 ax-mp ( V ∖ { 𝐴 } ) ⊆ ( V ∖ dom { ⟨ 𝐴 , 𝐵 ⟩ } )
9 resabs1 ( ( V ∖ { 𝐴 } ) ⊆ ( V ∖ dom { ⟨ 𝐴 , 𝐵 ⟩ } ) → ( ( 𝑆 ↾ ( V ∖ dom { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ↾ ( V ∖ { 𝐴 } ) ) = ( 𝑆 ↾ ( V ∖ { 𝐴 } ) ) )
10 8 9 ax-mp ( ( 𝑆 ↾ ( V ∖ dom { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ↾ ( V ∖ { 𝐴 } ) ) = ( 𝑆 ↾ ( V ∖ { 𝐴 } ) )
11 dmres dom ( { ⟨ 𝐴 , 𝐵 ⟩ } ↾ ( V ∖ { 𝐴 } ) ) = ( ( V ∖ { 𝐴 } ) ∩ dom { ⟨ 𝐴 , 𝐵 ⟩ } )
12 disj2 ( ( ( V ∖ { 𝐴 } ) ∩ dom { ⟨ 𝐴 , 𝐵 ⟩ } ) = ∅ ↔ ( V ∖ { 𝐴 } ) ⊆ ( V ∖ dom { ⟨ 𝐴 , 𝐵 ⟩ } ) )
13 8 12 mpbir ( ( V ∖ { 𝐴 } ) ∩ dom { ⟨ 𝐴 , 𝐵 ⟩ } ) = ∅
14 11 13 eqtri dom ( { ⟨ 𝐴 , 𝐵 ⟩ } ↾ ( V ∖ { 𝐴 } ) ) = ∅
15 relres Rel ( { ⟨ 𝐴 , 𝐵 ⟩ } ↾ ( V ∖ { 𝐴 } ) )
16 reldm0 ( Rel ( { ⟨ 𝐴 , 𝐵 ⟩ } ↾ ( V ∖ { 𝐴 } ) ) → ( ( { ⟨ 𝐴 , 𝐵 ⟩ } ↾ ( V ∖ { 𝐴 } ) ) = ∅ ↔ dom ( { ⟨ 𝐴 , 𝐵 ⟩ } ↾ ( V ∖ { 𝐴 } ) ) = ∅ ) )
17 15 16 ax-mp ( ( { ⟨ 𝐴 , 𝐵 ⟩ } ↾ ( V ∖ { 𝐴 } ) ) = ∅ ↔ dom ( { ⟨ 𝐴 , 𝐵 ⟩ } ↾ ( V ∖ { 𝐴 } ) ) = ∅ )
18 14 17 mpbir ( { ⟨ 𝐴 , 𝐵 ⟩ } ↾ ( V ∖ { 𝐴 } ) ) = ∅
19 10 18 uneq12i ( ( ( 𝑆 ↾ ( V ∖ dom { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ↾ ( V ∖ { 𝐴 } ) ) ∪ ( { ⟨ 𝐴 , 𝐵 ⟩ } ↾ ( V ∖ { 𝐴 } ) ) ) = ( ( 𝑆 ↾ ( V ∖ { 𝐴 } ) ) ∪ ∅ )
20 un0 ( ( 𝑆 ↾ ( V ∖ { 𝐴 } ) ) ∪ ∅ ) = ( 𝑆 ↾ ( V ∖ { 𝐴 } ) )
21 19 20 eqtri ( ( ( 𝑆 ↾ ( V ∖ dom { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ↾ ( V ∖ { 𝐴 } ) ) ∪ ( { ⟨ 𝐴 , 𝐵 ⟩ } ↾ ( V ∖ { 𝐴 } ) ) ) = ( 𝑆 ↾ ( V ∖ { 𝐴 } ) )
22 5 21 eqtri ( ( ( 𝑆 ↾ ( V ∖ dom { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ∪ { ⟨ 𝐴 , 𝐵 ⟩ } ) ↾ ( V ∖ { 𝐴 } ) ) = ( 𝑆 ↾ ( V ∖ { 𝐴 } ) )
23 4 22 eqtrdi ( 𝑆𝑉 → ( ( 𝑆 sSet ⟨ 𝐴 , 𝐵 ⟩ ) ↾ ( V ∖ { 𝐴 } ) ) = ( 𝑆 ↾ ( V ∖ { 𝐴 } ) ) )