Step |
Hyp |
Ref |
Expression |
1 |
|
isstruct |
⊢ ( 𝐺 Struct 〈 𝑀 , 𝑁 〉 ↔ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁 ) ∧ Fun ( 𝐺 ∖ { ∅ } ) ∧ dom 𝐺 ⊆ ( 𝑀 ... 𝑁 ) ) ) |
2 |
|
simp2 |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁 ) ∧ 𝐺 Struct 〈 𝑀 , 𝑁 〉 ∧ ( 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) ) → 𝐺 Struct 〈 𝑀 , 𝑁 〉 ) |
3 |
|
simp3l |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁 ) ∧ 𝐺 Struct 〈 𝑀 , 𝑁 〉 ∧ ( 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) ) → 𝐸 ∈ 𝑉 ) |
4 |
|
1z |
⊢ 1 ∈ ℤ |
5 |
|
nnge1 |
⊢ ( 𝑀 ∈ ℕ → 1 ≤ 𝑀 ) |
6 |
|
eluzuzle |
⊢ ( ( 1 ∈ ℤ ∧ 1 ≤ 𝑀 ) → ( 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝐼 ∈ ( ℤ≥ ‘ 1 ) ) ) |
7 |
4 5 6
|
sylancr |
⊢ ( 𝑀 ∈ ℕ → ( 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝐼 ∈ ( ℤ≥ ‘ 1 ) ) ) |
8 |
|
elnnuz |
⊢ ( 𝐼 ∈ ℕ ↔ 𝐼 ∈ ( ℤ≥ ‘ 1 ) ) |
9 |
7 8
|
syl6ibr |
⊢ ( 𝑀 ∈ ℕ → ( 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝐼 ∈ ℕ ) ) |
10 |
9
|
adantld |
⊢ ( 𝑀 ∈ ℕ → ( ( 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐼 ∈ ℕ ) ) |
11 |
10
|
3ad2ant1 |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁 ) → ( ( 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐼 ∈ ℕ ) ) |
12 |
11
|
a1d |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁 ) → ( 𝐺 Struct 〈 𝑀 , 𝑁 〉 → ( ( 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐼 ∈ ℕ ) ) ) |
13 |
12
|
3imp |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁 ) ∧ 𝐺 Struct 〈 𝑀 , 𝑁 〉 ∧ ( 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) ) → 𝐼 ∈ ℕ ) |
14 |
2 3 13
|
3jca |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁 ) ∧ 𝐺 Struct 〈 𝑀 , 𝑁 〉 ∧ ( 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) ) → ( 𝐺 Struct 〈 𝑀 , 𝑁 〉 ∧ 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ℕ ) ) |
15 |
|
op1stg |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) = 𝑀 ) |
16 |
15
|
breq2d |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝐼 ≤ ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) ↔ 𝐼 ≤ 𝑀 ) ) |
17 |
|
eqidd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝐼 = 𝐼 ) |
18 |
16 17 15
|
ifbieq12d |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → if ( 𝐼 ≤ ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) , 𝐼 , ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) ) = if ( 𝐼 ≤ 𝑀 , 𝐼 , 𝑀 ) ) |
19 |
18
|
3adant3 |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁 ) → if ( 𝐼 ≤ ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) , 𝐼 , ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) ) = if ( 𝐼 ≤ 𝑀 , 𝐼 , 𝑀 ) ) |
20 |
19
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁 ) ∧ ( 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) ) → if ( 𝐼 ≤ ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) , 𝐼 , ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) ) = if ( 𝐼 ≤ 𝑀 , 𝐼 , 𝑀 ) ) |
21 |
|
eluz2 |
⊢ ( 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼 ) ) |
22 |
|
zre |
⊢ ( 𝐼 ∈ ℤ → 𝐼 ∈ ℝ ) |
23 |
22
|
rexrd |
⊢ ( 𝐼 ∈ ℤ → 𝐼 ∈ ℝ* ) |
24 |
23
|
3ad2ant2 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼 ) → 𝐼 ∈ ℝ* ) |
25 |
|
zre |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) |
26 |
25
|
rexrd |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ* ) |
27 |
26
|
3ad2ant1 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼 ) → 𝑀 ∈ ℝ* ) |
28 |
|
simp3 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼 ) → 𝑀 ≤ 𝐼 ) |
29 |
24 27 28
|
3jca |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼 ) → ( 𝐼 ∈ ℝ* ∧ 𝑀 ∈ ℝ* ∧ 𝑀 ≤ 𝐼 ) ) |
30 |
29
|
a1d |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀 ≤ 𝐼 ) → ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁 ) → ( 𝐼 ∈ ℝ* ∧ 𝑀 ∈ ℝ* ∧ 𝑀 ≤ 𝐼 ) ) ) |
31 |
21 30
|
sylbi |
⊢ ( 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁 ) → ( 𝐼 ∈ ℝ* ∧ 𝑀 ∈ ℝ* ∧ 𝑀 ≤ 𝐼 ) ) ) |
32 |
31
|
adantl |
⊢ ( ( 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁 ) → ( 𝐼 ∈ ℝ* ∧ 𝑀 ∈ ℝ* ∧ 𝑀 ≤ 𝐼 ) ) ) |
33 |
32
|
impcom |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁 ) ∧ ( 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) ) → ( 𝐼 ∈ ℝ* ∧ 𝑀 ∈ ℝ* ∧ 𝑀 ≤ 𝐼 ) ) |
34 |
|
xrmineq |
⊢ ( ( 𝐼 ∈ ℝ* ∧ 𝑀 ∈ ℝ* ∧ 𝑀 ≤ 𝐼 ) → if ( 𝐼 ≤ 𝑀 , 𝐼 , 𝑀 ) = 𝑀 ) |
35 |
33 34
|
syl |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁 ) ∧ ( 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) ) → if ( 𝐼 ≤ 𝑀 , 𝐼 , 𝑀 ) = 𝑀 ) |
36 |
20 35
|
eqtr2d |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁 ) ∧ ( 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) ) → 𝑀 = if ( 𝐼 ≤ ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) , 𝐼 , ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) ) ) |
37 |
36
|
3adant2 |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁 ) ∧ 𝐺 Struct 〈 𝑀 , 𝑁 〉 ∧ ( 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) ) → 𝑀 = if ( 𝐼 ≤ ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) , 𝐼 , ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) ) ) |
38 |
|
op2ndg |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) = 𝑁 ) |
39 |
38
|
eqcomd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑁 = ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) ) |
40 |
39
|
breq2d |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝐼 ≤ 𝑁 ↔ 𝐼 ≤ ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) ) ) |
41 |
40 39 17
|
ifbieq12d |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) = if ( 𝐼 ≤ ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) , ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) , 𝐼 ) ) |
42 |
41
|
3adant3 |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁 ) → if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) = if ( 𝐼 ≤ ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) , ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) , 𝐼 ) ) |
43 |
42
|
3ad2ant1 |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁 ) ∧ 𝐺 Struct 〈 𝑀 , 𝑁 〉 ∧ ( 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) ) → if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) = if ( 𝐼 ≤ ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) , ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) , 𝐼 ) ) |
44 |
37 43
|
opeq12d |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁 ) ∧ 𝐺 Struct 〈 𝑀 , 𝑁 〉 ∧ ( 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) ) → 〈 𝑀 , if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) 〉 = 〈 if ( 𝐼 ≤ ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) , 𝐼 , ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) ) , if ( 𝐼 ≤ ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) , ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) , 𝐼 ) 〉 ) |
45 |
14 44
|
jca |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁 ) ∧ 𝐺 Struct 〈 𝑀 , 𝑁 〉 ∧ ( 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) ) → ( ( 𝐺 Struct 〈 𝑀 , 𝑁 〉 ∧ 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ℕ ) ∧ 〈 𝑀 , if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) 〉 = 〈 if ( 𝐼 ≤ ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) , 𝐼 , ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) ) , if ( 𝐼 ≤ ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) , ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) , 𝐼 ) 〉 ) ) |
46 |
45
|
3exp |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁 ) → ( 𝐺 Struct 〈 𝑀 , 𝑁 〉 → ( ( 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝐺 Struct 〈 𝑀 , 𝑁 〉 ∧ 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ℕ ) ∧ 〈 𝑀 , if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) 〉 = 〈 if ( 𝐼 ≤ ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) , 𝐼 , ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) ) , if ( 𝐼 ≤ ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) , ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) , 𝐼 ) 〉 ) ) ) ) |
47 |
46
|
3ad2ant1 |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁 ) ∧ Fun ( 𝐺 ∖ { ∅ } ) ∧ dom 𝐺 ⊆ ( 𝑀 ... 𝑁 ) ) → ( 𝐺 Struct 〈 𝑀 , 𝑁 〉 → ( ( 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝐺 Struct 〈 𝑀 , 𝑁 〉 ∧ 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ℕ ) ∧ 〈 𝑀 , if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) 〉 = 〈 if ( 𝐼 ≤ ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) , 𝐼 , ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) ) , if ( 𝐼 ≤ ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) , ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) , 𝐼 ) 〉 ) ) ) ) |
48 |
1 47
|
sylbi |
⊢ ( 𝐺 Struct 〈 𝑀 , 𝑁 〉 → ( 𝐺 Struct 〈 𝑀 , 𝑁 〉 → ( ( 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝐺 Struct 〈 𝑀 , 𝑁 〉 ∧ 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ℕ ) ∧ 〈 𝑀 , if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) 〉 = 〈 if ( 𝐼 ≤ ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) , 𝐼 , ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) ) , if ( 𝐼 ≤ ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) , ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) , 𝐼 ) 〉 ) ) ) ) |
49 |
48
|
pm2.43i |
⊢ ( 𝐺 Struct 〈 𝑀 , 𝑁 〉 → ( ( 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝐺 Struct 〈 𝑀 , 𝑁 〉 ∧ 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ℕ ) ∧ 〈 𝑀 , if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) 〉 = 〈 if ( 𝐼 ≤ ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) , 𝐼 , ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) ) , if ( 𝐼 ≤ ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) , ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) , 𝐼 ) 〉 ) ) ) |
50 |
49
|
expdcom |
⊢ ( 𝐸 ∈ 𝑉 → ( 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐺 Struct 〈 𝑀 , 𝑁 〉 → ( ( 𝐺 Struct 〈 𝑀 , 𝑁 〉 ∧ 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ℕ ) ∧ 〈 𝑀 , if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) 〉 = 〈 if ( 𝐼 ≤ ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) , 𝐼 , ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) ) , if ( 𝐼 ≤ ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) , ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) , 𝐼 ) 〉 ) ) ) ) |
51 |
50
|
3imp |
⊢ ( ( 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐺 Struct 〈 𝑀 , 𝑁 〉 ) → ( ( 𝐺 Struct 〈 𝑀 , 𝑁 〉 ∧ 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ℕ ) ∧ 〈 𝑀 , if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) 〉 = 〈 if ( 𝐼 ≤ ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) , 𝐼 , ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) ) , if ( 𝐼 ≤ ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) , ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) , 𝐼 ) 〉 ) ) |
52 |
|
setsstruct2 |
⊢ ( ( ( 𝐺 Struct 〈 𝑀 , 𝑁 〉 ∧ 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ℕ ) ∧ 〈 𝑀 , if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) 〉 = 〈 if ( 𝐼 ≤ ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) , 𝐼 , ( 1st ‘ 〈 𝑀 , 𝑁 〉 ) ) , if ( 𝐼 ≤ ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) , ( 2nd ‘ 〈 𝑀 , 𝑁 〉 ) , 𝐼 ) 〉 ) → ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) Struct 〈 𝑀 , if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) 〉 ) |
53 |
51 52
|
syl |
⊢ ( ( 𝐸 ∈ 𝑉 ∧ 𝐼 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐺 Struct 〈 𝑀 , 𝑁 〉 ) → ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) Struct 〈 𝑀 , if ( 𝐼 ≤ 𝑁 , 𝑁 , 𝐼 ) 〉 ) |