| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elex |
⊢ ( 𝑆 ∈ 𝑉 → 𝑆 ∈ V ) |
| 2 |
|
elex |
⊢ ( 𝐴 ∈ 𝑊 → 𝐴 ∈ V ) |
| 3 |
|
resexg |
⊢ ( 𝑆 ∈ V → ( 𝑆 ↾ ( V ∖ dom { 𝐴 } ) ) ∈ V ) |
| 4 |
3
|
adantr |
⊢ ( ( 𝑆 ∈ V ∧ 𝐴 ∈ V ) → ( 𝑆 ↾ ( V ∖ dom { 𝐴 } ) ) ∈ V ) |
| 5 |
|
snex |
⊢ { 𝐴 } ∈ V |
| 6 |
|
unexg |
⊢ ( ( ( 𝑆 ↾ ( V ∖ dom { 𝐴 } ) ) ∈ V ∧ { 𝐴 } ∈ V ) → ( ( 𝑆 ↾ ( V ∖ dom { 𝐴 } ) ) ∪ { 𝐴 } ) ∈ V ) |
| 7 |
4 5 6
|
sylancl |
⊢ ( ( 𝑆 ∈ V ∧ 𝐴 ∈ V ) → ( ( 𝑆 ↾ ( V ∖ dom { 𝐴 } ) ) ∪ { 𝐴 } ) ∈ V ) |
| 8 |
|
simpl |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑒 = 𝐴 ) → 𝑠 = 𝑆 ) |
| 9 |
|
simpr |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑒 = 𝐴 ) → 𝑒 = 𝐴 ) |
| 10 |
9
|
sneqd |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑒 = 𝐴 ) → { 𝑒 } = { 𝐴 } ) |
| 11 |
10
|
dmeqd |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑒 = 𝐴 ) → dom { 𝑒 } = dom { 𝐴 } ) |
| 12 |
11
|
difeq2d |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑒 = 𝐴 ) → ( V ∖ dom { 𝑒 } ) = ( V ∖ dom { 𝐴 } ) ) |
| 13 |
8 12
|
reseq12d |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑒 = 𝐴 ) → ( 𝑠 ↾ ( V ∖ dom { 𝑒 } ) ) = ( 𝑆 ↾ ( V ∖ dom { 𝐴 } ) ) ) |
| 14 |
13 10
|
uneq12d |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑒 = 𝐴 ) → ( ( 𝑠 ↾ ( V ∖ dom { 𝑒 } ) ) ∪ { 𝑒 } ) = ( ( 𝑆 ↾ ( V ∖ dom { 𝐴 } ) ) ∪ { 𝐴 } ) ) |
| 15 |
|
df-sets |
⊢ sSet = ( 𝑠 ∈ V , 𝑒 ∈ V ↦ ( ( 𝑠 ↾ ( V ∖ dom { 𝑒 } ) ) ∪ { 𝑒 } ) ) |
| 16 |
14 15
|
ovmpoga |
⊢ ( ( 𝑆 ∈ V ∧ 𝐴 ∈ V ∧ ( ( 𝑆 ↾ ( V ∖ dom { 𝐴 } ) ) ∪ { 𝐴 } ) ∈ V ) → ( 𝑆 sSet 𝐴 ) = ( ( 𝑆 ↾ ( V ∖ dom { 𝐴 } ) ) ∪ { 𝐴 } ) ) |
| 17 |
7 16
|
mpd3an3 |
⊢ ( ( 𝑆 ∈ V ∧ 𝐴 ∈ V ) → ( 𝑆 sSet 𝐴 ) = ( ( 𝑆 ↾ ( V ∖ dom { 𝐴 } ) ) ∪ { 𝐴 } ) ) |
| 18 |
1 2 17
|
syl2an |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( 𝑆 sSet 𝐴 ) = ( ( 𝑆 ↾ ( V ∖ dom { 𝐴 } ) ) ∪ { 𝐴 } ) ) |