Step |
Hyp |
Ref |
Expression |
1 |
|
setsvtx.i |
⊢ 𝐼 = ( .ef ‘ ndx ) |
2 |
|
setsvtx.s |
⊢ ( 𝜑 → 𝐺 Struct 𝑋 ) |
3 |
|
setsvtx.b |
⊢ ( 𝜑 → ( Base ‘ ndx ) ∈ dom 𝐺 ) |
4 |
|
setsvtx.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝑊 ) |
5 |
1
|
fvexi |
⊢ 𝐼 ∈ V |
6 |
5
|
a1i |
⊢ ( 𝜑 → 𝐼 ∈ V ) |
7 |
2 6 4
|
setsn0fun |
⊢ ( 𝜑 → Fun ( ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ∖ { ∅ } ) ) |
8 |
1
|
eqcomi |
⊢ ( .ef ‘ ndx ) = 𝐼 |
9 |
8
|
preq2i |
⊢ { ( Base ‘ ndx ) , ( .ef ‘ ndx ) } = { ( Base ‘ ndx ) , 𝐼 } |
10 |
2 6 4 3
|
basprssdmsets |
⊢ ( 𝜑 → { ( Base ‘ ndx ) , 𝐼 } ⊆ dom ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) |
11 |
9 10
|
eqsstrid |
⊢ ( 𝜑 → { ( Base ‘ ndx ) , ( .ef ‘ ndx ) } ⊆ dom ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) |
12 |
|
funvtxval |
⊢ ( ( Fun ( ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ∖ { ∅ } ) ∧ { ( Base ‘ ndx ) , ( .ef ‘ ndx ) } ⊆ dom ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) → ( Vtx ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) = ( Base ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) ) |
13 |
7 11 12
|
syl2anc |
⊢ ( 𝜑 → ( Vtx ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) = ( Base ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) ) |
14 |
|
baseid |
⊢ Base = Slot ( Base ‘ ndx ) |
15 |
|
slotsbaseefdif |
⊢ ( Base ‘ ndx ) ≠ ( .ef ‘ ndx ) |
16 |
15 1
|
neeqtrri |
⊢ ( Base ‘ ndx ) ≠ 𝐼 |
17 |
14 16
|
setsnid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) |
18 |
13 17
|
eqtr4di |
⊢ ( 𝜑 → ( Vtx ‘ ( 𝐺 sSet 〈 𝐼 , 𝐸 〉 ) ) = ( Base ‘ 𝐺 ) ) |