Step |
Hyp |
Ref |
Expression |
1 |
|
setsms.x |
⊢ ( 𝜑 → 𝑋 = ( Base ‘ 𝑀 ) ) |
2 |
|
setsms.d |
⊢ ( 𝜑 → 𝐷 = ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) ) |
3 |
|
setsms.k |
⊢ ( 𝜑 → 𝐾 = ( 𝑀 sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝐷 ) 〉 ) ) |
4 |
|
setsms.m |
⊢ ( 𝜑 → 𝑀 ∈ 𝑉 ) |
5 |
1 2 3 4
|
setsmstopn |
⊢ ( 𝜑 → ( MetOpen ‘ 𝐷 ) = ( TopOpen ‘ 𝐾 ) ) |
6 |
1 2 3
|
setsmsds |
⊢ ( 𝜑 → ( dist ‘ 𝑀 ) = ( dist ‘ 𝐾 ) ) |
7 |
1 2 3
|
setsmsbas |
⊢ ( 𝜑 → 𝑋 = ( Base ‘ 𝐾 ) ) |
8 |
7
|
sqxpeqd |
⊢ ( 𝜑 → ( 𝑋 × 𝑋 ) = ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) |
9 |
6 8
|
reseq12d |
⊢ ( 𝜑 → ( ( dist ‘ 𝑀 ) ↾ ( 𝑋 × 𝑋 ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) |
10 |
2 9
|
eqtrd |
⊢ ( 𝜑 → 𝐷 = ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) |
11 |
10
|
fveq2d |
⊢ ( 𝜑 → ( MetOpen ‘ 𝐷 ) = ( MetOpen ‘ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) ) |
12 |
5 11
|
eqtr3d |
⊢ ( 𝜑 → ( TopOpen ‘ 𝐾 ) = ( MetOpen ‘ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) ) |
13 |
|
eqid |
⊢ ( TopOpen ‘ 𝐾 ) = ( TopOpen ‘ 𝐾 ) |
14 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
15 |
|
eqid |
⊢ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) = ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) |
16 |
13 14 15
|
isxms2 |
⊢ ( 𝐾 ∈ ∞MetSp ↔ ( ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝐾 ) ) ∧ ( TopOpen ‘ 𝐾 ) = ( MetOpen ‘ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) ) ) |
17 |
16
|
rbaib |
⊢ ( ( TopOpen ‘ 𝐾 ) = ( MetOpen ‘ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) → ( 𝐾 ∈ ∞MetSp ↔ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝐾 ) ) ) ) |
18 |
12 17
|
syl |
⊢ ( 𝜑 → ( 𝐾 ∈ ∞MetSp ↔ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝐾 ) ) ) ) |
19 |
7
|
fveq2d |
⊢ ( 𝜑 → ( ∞Met ‘ 𝑋 ) = ( ∞Met ‘ ( Base ‘ 𝐾 ) ) ) |
20 |
10 19
|
eleq12d |
⊢ ( 𝜑 → ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ↔ ( ( dist ‘ 𝐾 ) ↾ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝐾 ) ) ) ) |
21 |
18 20
|
bitr4d |
⊢ ( 𝜑 → ( 𝐾 ∈ ∞MetSp ↔ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) ) |